Текст книги "Пинбол-эффект. От византийских мозаик до транзисторов и другие путешествия во времени"
Автор книги: Джеймс Бёрк
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 9 (всего у книги 24 страниц) [доступный отрывок для чтения: 9 страниц]
8
Общий сбор
В современных новостях частенько появляется сюжет: самолет на взлетно-посадочной полосе, полный напуганных и измученных пассажиров, террорист, приставивший пистолет к голове пилота, над летным полем кружат вертолеты со снайперами, которые стараются улучить момент и застрелить преступника, и кареты скорой помощи, готовые принять раненых пассажиров. По злой иронии судьбы все элементы этой трагедии – оружие, летательный аппарат и медицинские технологии – в паутине перемен тесно взаимосвязаны и каждый из этих элементов обязан своим существованием другому.
Как бы ни закончилась операция – мирно или с применением силы, – на борту кареты скорой помощи есть все современные средства оказания первой помощи раненым или умирающим. В арсенале медиков, помимо вездесущих антибиотиков 134 – 152 и других обязательных препаратов, всегда есть ингаляционный анестетик – газ, который впервые был применен французским физиологом Полем Бэром. Он жил в Париже и в начале своей трудовой деятельности ставил опыты на хвостовых тканях крыс. Затем Бэр приобрел известность благодаря своим исследованиям чувствительных растений. Он, в частности, пытался устроить «анестезию» мимозе, чтобы понять, почему она сворачивается при касании. Выяснилось, что этот процесс вызван сокращением объема клеток листовой подушечки и оберегает листья от механического давления.
Бэр вообще очень интересовался давлением. В 1868 году, чтобы выяснить влияние высокого и низкого давления на водолазов и альпинистов, он построил специальную стальную барокамеру и провел ряд экспериментов над своим собственным телом. Он установил, что кислород под низким давлением вызывает учащение пульса, головную боль, головокружение, потемнение в глазах, тошноту, пагубно влияет на мозговую деятельность. Под высоким же давлением кислород просто ядовит. Бэр также описал симптомы кессонной болезни, которая вызвана образованием пузырьков азота в крови водолаза при быстром подъеме с большой глубины. Однако главным открытием Бэра было то, что действие газа обусловлено не его количеством, а давлением.
Большую часть своих исследований Бэр посвятил действию веселящего газа (закиси азота), пытаясь понять, почему он вызывает одновременно и анестезию, и удушье. Для одного из экспериментов он подготовил смесь из 1⁄6 кислорода и 5⁄6 закиси азота и подал ее под давлением в полторы атмосферы. При таком составе смеси и таком давлении веселящий газ вызывал наркоз, а кислорода было достаточно для поддержания дыхания. Бэр стал работать с воздухоплавателями – в полете на разных высотах они испытывали на себе действие воздуха разного давления. В 1875 году он сначала провел тренировки команды аэронавтов в своей барокамере, а для полета выдал им наполненные сжатым кислородом емкости, сделанные из коровьих потрохов, из которых они должны были начать дышать при симптомах головокружения. Один из членов экспедиции, Гастон Тиссандье, воспользовался кислородом и выжил, а второй аэронавт погиб. В 1878 году Бэр опубликовал работу «Барометрическое давление», которая стала настольной книгой для специалистов по авиационной медицине времен Первой мировой войны.
В эпоху Бэра воздухоплавание было уже достаточно развито. Аэростаты поднимались на высоту более восьми тысяч метров и применялись для изучения погоды и аэрофотосъемки (первое фото Парижа с воздушного шара датируется 1858 годом), а также использовались как воздушные наблюдательные посты во время наполеоновских войн.
Своими корнями аэронавтика 135 – 20 , 69 , 81 уходит в производство бумаги – именно таким было ремесло первых воздухоплавателей, братьев Жозефа и Жака Монгольфье, владевших бумажными фабриками под Парижем. По роду своей деятельности они располагали огромным количеством сырья как для первых моделей шаров, так и для топлива. Скорее всего, на создание первого летательного аппарата их вдохновила награда, которую объявило французское правительство за план снятия осады Гибралтара. В 1781 году испанские войска были блокированы в Гибралтаре англичанами, а Франция в этом конфликте выступала на стороне Испании.
По задумке братьев воздушный шар должен был пролететь над головами английских солдат. Свои опыты они начали 15 ноября 1782 года в городе Аннонэ под Парижем. Первый шар, оболочка которого была сделана из изысканного шелка и наполнена дымом от сжигания сена и шерсти, поднялся в воздух на двадцать три метра. Другой шар диаметром двенадцать метров, сшитый из холстины и покрытый бумагой, 5 июня 1783 года пролетел две тысячи метров со 180-килограммовым балластом. К сожалению, первый пилотируемый полет шара припоздал к осаде Гибралтара. Он состоялся в 1783 году в Булонском лесу. Шар с двумя аэронавтами-аристократами Пилатром де Розье и маркизом д’Арландом поднялся на тысячу метров и за двадцать шесть минут преодолел расстояние в двенадцать километров. Месяцем раньше в присутствии короля и королевы был запущен экспериментальный шар с командой, состоящей из петуха, овцы и утки.
Однако королю нравилось любоваться не только летающими животными, еще он очень любил роскошные фонтаны Версаля. Подача воды для них стоила невероятных денег – специально для этого была создана насосная станция, качавшая воду из Сены (силовой установкой служила водяная же мельница). В 1795 году, гуляя по пляжу, Жозеф Монгольфье придумал способ подачи воды с меньшими затратами и меньшей механизацией. Идею подсказали волны морского прилива, яростно пробивавшиеся сквозь проемы в прибрежных скалах. Монгольфье назвал свое изобретение гидравлическим тараном.
Прототип устройства был создан в 1805 году прямо в русле реки. Вода под давлением поступала в камеру, оборудованную отбойным клапаном. При определенном давлении воды клапан закрывался и возникал гидроудар, под действием которого открывался впускной клапан другой камеры, наполненной воздухом. Поступая во вторую камеру, вода сжимала воздух. Под давлением впускной клапан закрывался, и выталкиваемая сжатым воздухом вода устремлялась в отводную трубу. Затем давление в системе стабилизировалось, клапаны приходили в исходное положение и цикл повторялся. Скорость работы гидротаранного насоса Монгольфье была сто двадцать циклов в минуту.
Изобретение пользовалось успехом, и в начале XIX века по всей Франции работало уже семьсот гидротаранных насосов. Их использовали для водоснабжения городов, каналов и систем орошения полей. Гидротаран также купила фабрика Джеймса Уатта в Бирмингеме 136 – 17 , 221 , позже их применяли для строительства моста Британия в Уэльсе и тоннеля под рекой Гудзон в Нью-Йорке. Что же касается Версаля, то, несмотря на популярность изобретения Монгольфье и многочисленные обещания, деньги на строительство нового насоса так и не были выделены, и прежняя насосная станция под названием «машина Марли» осталась на месте.
Немецкая гравюра (такие выпускались в каждой стране), на которой изображен первый пилотируемый полет воздушного шара братьев Монгольфье, состоявшийся в ноябре 1783 года. Один из двух аэронавтов, Пилатр де Розье, позже погиб во время другого полета. Братья планировали сконструировать управляемый аэростат, но планам помешала французская революция
Идея гидравлического тарана получила новый толчок через пятьдесят лет в связи с политическими событиями, а именно процессом объединения Италии. В середине XIX века король Сардинии (который помимо этого острова владел еще большими территориями на севере Италии) решил предпринять решительные меры применительно к своей провинции Савойи, которая как на беду находилась по ту сторону Альп.
Кроме того, Альпы причиняли и другие неудобства. В них, как в стену, упирались железные дороги стран Северной Европы – дальше было не проехать. Коммерческие грузы с большими затратами приходилось отправлять окружным путем по морю. Такие же неудобства испытывали и путешественники, особенно те, которые ехали из стран Ближнего и Дальнего Востока. Альпы вставали всем в копеечку, а это – первейший стимул к инновациям во все времена.
Строительство тоннеля под горой Мон-Сенис 137 – 179 между савойским городом Моданом и городом Бардонеккия неподалеку от Турина было торжественно начато 15 августа 1857 года в присутствии Виктора Эммануила II и Наполеона III. Расходы предполагалось разделить пополам. Сперва скважины для закладки взрывчатки бурили вручную, работы в тоннеле продвигались со скоростью двадцать три сантиметра в день. Такими темпами прокладка продлилась бы более сорока лет. В 1861 году начальник строительства Жермен Соммейе решил немного ускорить процесс и предложил бурить породу пневматическими бурами, а для подачи воздуха использовать модификацию гидравлического тарана Монгольфье.
Вода стекала из резервуара, расположенного в пятидесяти метрах выше по склону, и вращала колеса, которые нагнетали воду для сжатия воздуха. Воздух подавался по трубам в тоннель и приводил в действие 12-тонную автоматическую установку с девятью пневматическими бурами, которые высверливали в горной породе по восемьдесят отверстий разной глубины за один прием. После чего во все отверстия, кроме трех центральных, закладывалась взрывчатка и подрывалась.
С новой технологией бурения скорость работы увеличилась почти в двадцать раз – до пяти метров в день, так что строительство тоннеля Мон-Сенис (равно как и любого другого) не требовало теперь целой вечности. Тоннель длиной тринадцать километров был закончен в день Рождества 1870 года, отняв двадцать восемь человеческих жизней, 2 954 000 зарядов взрывчатки и три миллиона фунтов стерлингов. К сожалению, с объединением Италии пришлось повременить: пока шло строительство, случилась война за независимость страны и Савойя отошла Франции. Тем не менее французы выплатили оговоренную половину стоимости тоннеля. После такого оглушительного успеха у инвесторов, особенно швейцарских, не осталось повода для сомнений и в течение тридцати лет открылись Сен-Готардский, Арльбергский и Симплонский тоннели, а новый Восточный экспресс с ветерком мчал напрямик из Кале в Стамбул.
По иронии судьбы Соммейе и еще два инженера Мон-Сенисского тоннеля умерли от сердечного приступа. Во время строительства они активно использовали новую взрывчатку – нитроглицерин. Нитроглицерин был впервые получен еще в 1846 году итальянцем Асканио Собреро, однако производство этого вещества было чрезвычайно опасным (и это еще мягко сказано). В 1862 году один шведский инженер и его сын нашли способ сделать производство нитроглицерина менее рискованным. Получилось не очень – в 1864 году их фабрика в Хеленборге взорвалась и погребла под руинами второго сына шведского инженера. Однако первый сын, а звали его Альфред Нобель 138 – 47 , выжил и продолжил исследования. В 1867 году он запатентовал смесь нитроглицерина с похожим на глину минералом – кизельгуром. Это было новое взрывчатое вещество – динамит 139 – 48 . Новая взрывчатка была впервые использована в Мон-Сенисском тоннеле, но это было только начало.
Та самая ирония заключается в том, что у больных сердцем инженеров лекарство валялось в буквальном смысле под ногами – именно им они и взрывали тоннель. Помимо взрывных работ, с 1867 года нитроглицерин применялся и в медицине – в составе лекарства под названием глоноин. Он состоял из одного процента нитроглицерина, остальные девяносто девять процентов приходились на алкоголь. Глоноин применялся как сосудорасширяющее средство для облегчения сердечных болей и симптомов стенокардии. В небольших дозах он расслаблял коронарные и другие сосуды, увеличивал приток крови и снижал давление.
Побочным эффектом от долгой работы с нитроглицерином в его взрывчатой ипостаси были головные боли, которые доктора того времени называли «динамитными». От них часто помогал глоноин – он расширял сосуды шеи, а от их сужения и болела голова.
Головную боль так и лечили, пока не произошла фармацевтическая революция. В 1853 году французский химик Шарль Жерар получил форму салициловой кислоты, которую назвал ацетилсалициловой. Его работа основывалась на исследованиях одного немецкого ученого, который выделил салициловую кислоту из таволги. Ацетилсалициловая кислота хорошо помогала при головной боли, однако ее получение отнимало слишком много времени и Жерар прекратил опыты. В 1890-х годах каждый немецкий химик считал своим долгом выделить что-нибудь из каменноугольной смолы (дегтя) 140 – 32 , 62 , 195 , нового побочного продукта горения коксового газа. Август Гофман 141 – 70 из компании «Байер» 142 – 72 выделил из нее фенол, из которого в свою очередь легко, быстро и дешево получалась искусственная ацетилсалициловая кислота. Продукт получил название-акроним, состоящее из букв A (ацетил), SPIR (от латинского названия таволги Spiraea ulmaria) и IN (окончание неизвестного происхождения), – аспирин. Головную боль перестали называть динамитной.
Фенол имел и другое название – карболовая кислота. С точки зрения сегодняшнего дня кажется очевидным, что ее стали использовать для дезинфекции. Однако способ, с помощью которого применяли это средство, приведет нас назад к сцене захвата самолета, с которой мы начали этот рассказ. В 1834 году другой немецкий химик, Рунге, установил, что карболовая кислота в слабоочищенном виде (не что иное, как креозот) предотвращает гниение дерева, а в 1857 году в английском городе Карлайле креозотом безуспешно пытались лечить сибирскую язву у скота 143 – 32 , 64 , 65 .
В 1867 году профессор хирургии университета Глазго Джозеф Листер, который был наслышан об экспериментах в Карлайле, придумал новый перевязочный материал – своеобразную искусственную корку для заживления после-операционных ран. Это был муслин, пропитанный смесью карболовой кислоты и парафина. Позже вместо муслина Листер стал применять прорезиненную ткань 144 – 37 , 66 , изготовленную по технологии шотландского изобретателя Макинтоша. Смерть от инфекций в послеоперационный период была делом обычным, и никто не знал, в чем было дело. Когда Листер опробовал свою новую перевязку на тринадцати пациентах со сложными переломами, все тринадцать благополучно поправились.
Состояние хирургии в тот период было таково, что большинство операций заканчивались, мягко говоря, нежелательными осложнениями, так что бытовала присказка «операция прошла отлично, а пациент умер». Условия содержания, о которых тогда мало кто задумывался, способствовали широкому распространению инфекций и госпитализация была чем-то сродни смертному приговору. Следующая находка Листера сделает больницы немного безопаснее мясной лавки. Этому поспособствует работа Бенджамина Ричардсона, зануды, скромняги и страстного велосипедиста. Он-то и выяснит удивительное – сильный холод вызывает онемение тканей.
Ричардсон был анестезиологом и, как все медики того времени, увлекался опытами с карболовой кислотой. Он установил, что в замороженном виде она вызывает онемение кожных покровов, но одновременно разрушает их. Однажды на балу его знакомая капнула духами ему на лоб, и Ричардсон невольно прислушался к ощущению холода, которое вызвало испарение. Этот случай подтолкнул его к созданию распылителя эфира. Эфирный наркоз был известен уже давно, а с прибором Ричардсона эфир можно было применять и как местный анестетик – например, чтобы обезболить челюсть, ногу, руку или грудную клетку.
Легко догадаться, что дальше сделал Листер. Кроме того, в лондонских театрах и на балах часто применялось такое устройство, как пульверизатор для ароматизации воздуха, и врачи, конечно, знали, что это такое. Неудивительно, что в 1871 году Листер стал применять на операциях аэрозоль карболовой кислоты, а распылителем служил усовершенствованный вариант бутылки с резиновой грушей, которую первоначально применял Ричардсон. Листер добавил новое слово в лексикон врачей-хирургов – вдобавок к командам «скальпель!» и «тампон!» они стали говорить «распыляем!». Распыленная карболовая кислота действовала очень эффективно, но вызывала жалобы пациентов (среди которых оказалась и королева Виктория), так как вызывала болезненное покалывание на коже. По этой причине в 1887 году от распылителя отказались в пользу другого, более совершенного и гигиеничного способа анестезии.
Возникновение этого способа – заслуга немецкого инженера Вильгельма Майбаха. В 1893 году Майбах работал в сотрудничестве с более известным своим коллегой, Готтлибом Даймлером. У сотрудника Даймлера была дочь с еще более известным именем – Мерседес. На новом автомобиле Даймлера, который носил имя дочери, стоял сконструированный Майбахом карбюратор, в основе которого был распылитель горючего. При помощи карбюратора в цилиндр двигателя подавалась горючая смесь из топлива и воздуха, которая воспламенялась искрой и, взрываясь, толкала поршень в цилиндре. Важнейшей деталью карбюратора выступал поплавок. Он располагался в камере, куда под действием силы тяжести или давления поступало топливо. От поплавковой камеры отходила трубка распылителя с зауженным концом, заведенная в трубу воздуховода. Когда поршень двигался вниз и давление в цилиндре понижалось, воздух устремлялся в него по воздуховоду. Благодаря разности давления, топливо вытекало из распылителя, смешивалось с потоком воздуха и попадало в цилиндр в распыленном виде. Поплавок же отмерял точный объем топлива, необходимого для впрыска. Механизм поплавковой камеры впоследствии заимствовали все производители автомобильных двигателей – он обеспечивал максимально точное для того времени соблюдение пропорций для приготовления горючей смеси.
Возвратно-поступательное движение поршня мотора Майбаха преобразовывалось во вращательное движение вала, которое передавалось шестерням и далее колесам и всему чему угодно, что должно было быстро вращаться. Столь же быстро, как вращаются лопатки турбины, которые выбрасывают раскаленный сжиганием горючей смеси воздух из двигателей нашего захваченного самолета.
Испуганно выглядывающие в окно пассажиры сидят в своих креслах по одной простой причине – они купили билеты на злополучный рейс через одну из многочисленных систем бронирования авиабилетов. Первая такая система появилась вскоре после шокирующей новости о подрыве советской атомной бомбы в августе 1949 года.
Американцы начали в панике реформировать всю систему национальной безопасности. Была объявлена обширная программа по производству атомных бомб и разработана первая компьютеризированная система из пятидесяти связанных между собой радиолокационных станций. Они расположились на северном побережье Аляски и Канады по дуге длиной пять тысяч километров – от мыса Барроу на западе до острова Баффинова Земля на востоке. Система была названа «Дьюлайн» (DEWline, где DEW – аббревиатура от Distant Early Warning System – система раннего предупреждения, англ.). Радиолокационные станции группировались в шесть секторов, каждый из которых контролировал восемьсот километров побережья. Со станций, которые могли засекать самолеты противника на расстоянии триста километров, сигналы передавались в Командный центр национальной обороны, расположенный под горой Шайенн в штате Колорадо. Теперь американские военные знали о приближении летящих через полюс советских бомбардировщиках за четыре часа. Все компьютеры системы «Дьюлайн» были связаны с командным центром, данные сравнивались и объединялись в единую целостную картину положения в небе.
Однажды весной 1953 года инженер компании «Ай-би-эм», который работал над проектом «Дьюлайн», летел рейсом авиакомпании «Америкэн эирлайнз» из Сан-Франциско в Нью-Йорк. Его соседом оказался президент этой самой авиакомпании. Выяснилось, что у обоих мужчин фамилия Смит, они разговорились (невероятно, из каких случайных совпадений иногда соткана ткань паутины!), и инженер объяснил соседу принцип работы системы «Дьюлайн». Тот быстро понял, какие возможности такая сеть передачи данных откроет для авиационной отрасли. В 1962 году «Америкэн эирлайнз» ввела в строй систему по бронированию билетов под названием «Сэбер» (SABER – Semi-Automatic Business Environment Research – полуавтоматическое оборудование для коммерческих исследований, англ.), которая стала прототипом всех существующих ныне аналогов.
Система «Сэбер» связала тысячи агентств и авиакасс. Кроме того, в ней постоянно обновлялись сведения о пассажирах, выбранном типе питания, бронировании отелей и заказах на прокат машины. Что характерно, вскоре система перешла от обслуживания пассажиров еще и к обслуживанию авиакомпаний, она затронула такие аспекты, как планирование полетов, техническое обслуживание самолетов, расписание работы экипажей, обеспечение топливом. В реальном времени выполнялись функции невиданного по тем временам уровня сложности и интегрированности.
Вслед за «Сэбер» в 1966 году в аэропорту Атланты был запущен новый проект «Маяк» (Beacon) – компьютерная система регулирования движения в воздухе, организованная по тому же принципу. Вообще говоря, «Сэбер» вывела авиационную отрасль на принципиально новый уровень организации и дала жизнь сложнейшей по своему внутреннему устройству современной системе воздушного сообщения. Авиационная отрасль стала показательным примером того, какие выгоды компьютеризация сулит тем отраслям экономики, где требуется эффективное управление географически распределенными операциями.
Парадоксальность связей в исторической паутине проявляется и здесь – и система «Сэбер», и сами компьютеры как таковые не появились бы на свет, если бы не одно событие далекого прошлого. В 1798 году офицер наполеоновского экспедиционного корпуса в Египте присмотрел для своей жены шелковую шаль, из тех, что привозились в страну из Кашмира. Когда он и его боевые товарищи послали такие шали своим женам, французских модниц охватило помешательство. Жена Наполеона Жозефина купила четыре тысячи таких платков. На изготовление пары кашмирских шалей (а их ткали попарно) уходило несколько лет. Они были такими тонкими, что проходили через обручальное кольцо – в самом Кашмире шаль была традиционным подарком на свадьбу. Изначально шали посылала своим вассалам принцесса в знак благодарности за подношения. Само слово «шаль» означало «подарок».
Как только мода на шали распространилась в Париже, она тут же пришла в Англию. Шали стали копировать силами местного производства. Во Франции появились фабрики в Реймсе и Париже, а англичане наладили выпуск платков в Норвиче, Хаддерсфилде и Брэдфорде. Самая успешная британская фабрика располагалась в шотландском городе Пэйсли. По имени города стали называть и орнамент. Широко распространенные теперь галстуки и кашне «в огурцах» – это «пэйсли». Сначала для утонченных покупателей «кашмирские» шали делали из шелка или шерсти, а затем появились вариации из хлопка, предназначенные для народа попроще. К концу 1890-х годов кашмирские шали носили уже все слои населения, и они стали дежурным подарком на свадьбу. Традиционный узор кашмирских платков состоял из множества мелких деталей и был очень сложен для копирования. То, что мы называем «огурцом» в этом орнаменте, – не что иное, как еловая или сосновая шишка, традиционный для мусульман символ процветания и плодородия. (Эту пикантную деталь часто замалчивали в викторианской Англии и не менее благочестивой Америке – уж очень хорош был спрос.)
Орнамент из альбома «кашмирских» тканей. Ткани из шотландского города Пэйсли пользовались огромным спросом по всей Европе. Узор был настолько сложен, что для его изготовления требовался автоматический ткацкий станок
В 1890 году молодой американский инженер Герман Холлерит, работавший в Американском бюро переписи населения, пытался придумать способ автоматизированной обработки статистических данных. Тут наш путь снова лежит через перекресток паутины, где пересекаются совершенно разные линии исторических событий. Шурин Холлерита работал на текстильном производстве и рассказал ему о новом «жаккардовом» ткацком станке, который использовался для высокоточного плетения дорогих «кашмирских» шалей. В конструкции станка использовался кусок картона с отверстиями в определенных местах. Эта деталь и «программировала» сложный узор – в процессе работы к ней прижимались пружинные крючки, проходили в отверстия и подцепляли нить нужного цвета.
Холлерит взял эту технологию на вооружение и изготовил картонные карточки для перфорирования размером с долларовую банкноту (это было сделано для удобства обработки карточек, так как машины для банкнот уже были известны). Отверстиями была закодирована информация об участнике переписи. Например, для мужчины, родившегося в Греции, работающего кровельщиком и живущего в Филадельфии, каждый из перечисленных параметров будет обозначен отверстием в определенном месте карты. Пружинные контакты счетного устройства, проникая в эти отверстия, замыкали электрическую цепь и передвигали стрелку прибора. Система обработки данных была устроена с использованием сортировочных машин для банкнот, что позволяло быстро упорядочивать и анализировать данные. Изобретение принесло Холлериту известность и успех, и вскоре он вместе с несколькими компаньонами учредил фирму, которая впоследствии будет называться «Интернэшнл бизнес машинз» (International Business Machines, IBM).
В 1910 году, незадолго до очередной переписи населения в США, инженер Джон Пауэрс, в свое время работавший вместе с Холлеритом, получил от бюро переписей заказ на проектирование такой системы учета данных, которая не подпадала бы под патент Холлерита. Власти просто не хотели платить Холлериту отчисления, сочтя их слишком большими. Пауэрс также использовал карточки, только действовали они по-другому. Отверстиями обозначались цифры. На карточке было сорок пять колонок, в каждой из которых предусматривалось девять позиций для отверстий. Карточки обрабатывали при помощи сортировочной машины, где использовалась металлическая щеточка. Когда щеточка попадала в отверстие, на нее поступал электрический ток.
Новая машина обрабатывала до пятнадцати карточек в час. Ее можно было подключить к табулятору, который подсчитывал количество дырочек (то есть единиц данных) определенной категории. Метод идеально подходил для статистики и анализа данных, например при подсчете количества товара или любых других единиц хранения. Библиотекари могли избавиться от лишней макулатуры – своих собственных книг для учета. В 1913 году изобретению особенно порадовались налоговики – они всегда рады любой автоматизации.
Ключом к успеху табулятора (а заодно и связующим звеном с историей про захваченный самолет) было то, каким образом данные пробивались на перфокарте. Пауэрс разработал клавиатуру с цифрами от 0 до 9. При нажатии на клавишу пробивалось отверстие, а затем аппарат автоматически продвигал карточку по горизонтали влево, таким образом подставляя под удар новую колонку. Двадцатые годы XX столетия были отмечены бурным ростом деловой активности, особенно в бухгалтерском деле, финансовой отрасли, рекламе и управлении. Пауэрс не преминул воспользоваться этим, и в 1927 году его фирма вошла в состав компании «Ремингтон» 145 – 21 , выпускавшей пишущие машины. «Ремингтон» в свою очередь был частью еще более крупного концерна «Рэнд», который производил самые разнообразные деловые принадлежности, от картотечных разделителей до каталожных шкафов. Клиентами «Рэнда» были банки, страховые компании, библиотеки, правительственные учреждения – те организации, где особое значение придавалось учету и хранению информации.
Производство всех этих вещей развивалось благодаря широкому внедрению пишущих машин. Идея создания такой машины принадлежит печатнику Кристоферу Шоулзу, которого вдохновил принцип работы фортепианных клавиш. Именно он придумал известную всем раскладку клавиатуры QWERTY. Буквы расположены именно так для того, чтобы часто используемые литеры не мешали друг другу. Проблема Шоулза заключалась в том, что у него не было оборудования, которое обладало бы нужной точностью для изготовления мелких деталей машины. В 1873 году он принес свои чертежи в компанию «Э. Ремингтон и сыновья» в Нью-Йорке. Производство наладили, и уже в 1888 году под эгидой компании Ремингтона был проведен конкурс на скорость печати на машинке, за которым последовал шквальный спрос. Не менее важно, что с появлением пишущих машинок пропуск в деловой мир получили женщины 146 – 76 .
Компания «Ремингтон» с готовностью согласилась купить разработку Шоулза по той простой причине, что после окончания Гражданской войны в США ее высокоточное оборудование на фабриках стояло без дела. Оно предназначалось для производства мелких взаимозаменяемых деталей, а значит, прекрасно подходило для затеи Шоулза. Однако до 1873 года все эти точные станки и машины использовались совсем для других целей – производства оружия. Согласно выводам американских военных, вращающийся затвор производства «Ремингтона» был признан лучшим и применялся в конструкции самой популярной винтовки в мире. Сам затвор и механизм курка шарнирно закреплялись и проворачивались под прямым углом к линии ствола, что обеспечивало максимальную герметичность в момент выстрела. Затвор Ремингтона предназначался для патронов кольцевого воспламенения французского образца, и для венчика гильзы предусматривалась прорезь, по которой и ударял боек. Всего компания «Ремингтон» продала более миллиона таких винтовок – они были на вооружении у армий Дании, Швеции, Египта, Франции и США.
Патроны кольцевого воспламенения дали жизнь и пистолетам. Королем пистолетного дела был, конечно, Кольт – только его фирма могла составить конкуренцию «Ремингтону» во время Войны Севера и Юга. Есть мнение, что саму идею револьвера он творчески заимствовал у одного англичанина, будучи с визитом в расположении английских войск в Калькутте в 1830 году. Так или иначе, когда в 1831 году он вернулся из путешествия с чертежами и деревянной моделью, денег на то, чтобы начать производство, у него не было. Чтобы собрать капитал, Кольт начал выступать с лекциями о медицинских свойствах закиси азота (которая из-за своего специфического действия называется еще «веселящим газом»). Для привлечения публики он добавил к своему имени докторскую степень и похвалялся научными регалиями (ни докторской степени, ни регалий у него, конечно, не было).
К 1836 году Кольт накопил достаточно, чтобы открыть собственное дело, и начал производить револьверы, однако вскоре обанкротился и стал подумывать о другом оружии, которое могло бы принести ему удачу. В 1841 году изобретателю приглянулись подводные мины, была основана компания «Сабмарин бэттери» и получены шесть тысяч долларов от американского правительства на проведение демонстрации нового оружия. Он также ухитрился получить приглашение в Россию – единственную страну, власти которой имели четкую программу развития минного дела. В 1842 году состоялась его демонстрация в Америке. К корпусу старой посудины в Нью-Йоркской гавани был прикреплен контейнер с порохом, детонация производилась при помощи электричества и длинного медного провода (который Кольт одолжил у своего соседа, Сэмюэла Морзе 147 – 30 , 215 ). Позднее, во время испытаний на реке Патомак, на глазах у восьмитысячной толпы Кольту удалось подорвать движущийся корабль, находившийся на удалении пяти миль. Ходили слухи, что он проделал это с помощью диковинных ухищрений – специальных зеркал и наблюдателей на башнях. Раскрыть секрет Кольт отказался, на что чиновники от американского флота ответили, что также отказываются от его изобретения, и вопрос с морскими минами Кольта был закрыт.