355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джаиант Нарликар » От чёрных облаков к чёрным дырам » Текст книги (страница 6)
От чёрных облаков к чёрным дырам
  • Текст добавлен: 29 марта 2017, 02:00

Текст книги "От чёрных облаков к чёрным дырам"


Автор книги: Джаиант Нарликар



сообщить о нарушении

Текущая страница: 6 (всего у книги 10 страниц)

Глава 7 ЗВЁЗДЫ КАК ТЕРМОЯДЕРНЫЕ РЕАКТОРЫ

В предыдущей главе мы убедились, что источник энергии излучения звёзд находится в её центре и представляет собой термоядерный реактор. Посмотрим теперь, как меняется этот реактор в процессе старения звезды и как эти изменения влияют на её внешний вид и размеры. ЗВЁЗДЫ ГЛАВНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

В гл. 7 мы обсудили простейший ядерный реактор. Его топливом являются ядра водорода, т. е. просто протоны. Четыре протона, соединяясь вместе, образуют ядро гелия. И в этом процессе синтеза выделяется энергия.

До того, как стал известен этот процесс, уравнения звёздной структуры Эддингтона были неполны в том смысле, что не хватало одного уравнения. В такой ситуации лучшее, что могли сделать астрофизики, это вычислить светимость звезды L, задав два основных параметра звезды – её массу М и радиус R. Как только решилась проблема генерации энергии за счёт ядерного синтеза, появилась возможность сделать лучше: вычислить как светимость L, так и радиус R как функции одного единственного параметра – массы звезды М. Так как астроному значительно легче определить светимость звезды, чем её радиус, соотношение между массой и светимостью стало главным результатом этих вычислений, имеющим прямое отношение к наблюдениям. Мы поясним это с помощью диаграммы Г—Р.

Есть две важнейшие причины, по которым масса звезды существенно определяет её внутреннее строение. Первая из них заключается в том, что масса определяет, каким образом энергия переносится из глубин звезды к её внешней поверхности.

Вообще говоря, существуют три пути, по которым теплота может передаваться от одной точки к другой. При теплопроводности теплота передаётся от соседа к соседу атомами и молекулами нагретого вещества, хотя эти частицы остаются на своих местах. Такой процесс действует, например, в твёрдых металлах. При конвекции, обычно в жидкостях и газах, малые количества нагретого вещества целиком перемещаются от одного конца тела до другого, перенося теплоту с собой. Такое движение можно заметить, например, при нагревании воды до кипения. Наконец, третий путь связан с излучением, когда энергия переносится фотонами. В гл. 5 мы уже видели, каким образом два последних процесса доминируют на разных стадиях процесса образования звезды.

В звезде также имеют место два последних процесса, причём опять они действуют с неодинаковой эффективностью. Может случиться, что в некоторых частях звезды условия более подходящие для того, чтобы частицы газа двигались целиком и переносили теплоту путём конвекции из внутренней области во внешнюю. Это происходит тогда, когда некоторое количество частиц газа, получив теплоту от центрального источника, расширяется и становится легче своего окружения, так что в результате всплывает наверх, как показано на рис. 43. В других случаях это может быть не лучшим путём переноса теплоты и излучение (в форме световых фотонов) становится более эффективным механизмом. Но, как мы видели в гл. 5, в некоторых случаях непрозрачность звёздного вещества препятствует выходу фотонов наружу.

Рис. 43. Когда какой-то объём газа, показанный заштрихованным квадратом на рисунке, получает извне порцию теплоты (стрелка на рис. а), он расширяется и всплывает наверх (как показано на рис. б). Условия во внешних слоях определяют, сможет ли этот объём газа выйти наружу

Таким образом, оба процесса имеют свои за и против. Если имеется достаточно резкое падение температуры от центра наружу, то конвекция может преобладать, а если непрозрачность невелика, то основным станет излучение. Количественный анализ (который позволяет продвинуться значительно дальше наших качественных аргументов) показывает, что масса звезды определяет, в какой зоне доминирует один из конкурирующих процессов.

Рис. 44. Перенос энергии в более и менее массивных звёздах. В зачернённой области происходит конвективный перенос энергии; в незачерненной области энергия переносится излучением. Наверху показана звезда менее массивная, а внизу – более массивная, чем Солнце

В основном есть две зоны – внутренняя сердцевина и внешняя оболочка (рис. 44). В очень массивной звезде сердцевина конвективная, а в оболочке преобладает излучение, а в звёздах малой массы два процесса, меняются местами. Критическая масса, при которой происходит переход, примерно равна массе Солнца M. Само Солнце относится ко второму типу.

Второе важное обстоятельство, связанное с массой звезды, это тот путь, по которому протекают термоядерные реакции в её центре. Есть два способа достичь слияния ядер водорода в ядро гелия. В звёздах малой массы наиболее эффективной оказывается так называемая pp цепочка. Она состоит из следующей совокупности реакций:

p + p2H + e+ + ν,

2H + p3He + излучение,

3He + 3He → 4He + 2p.

В приведённых реакциях происходит последовательное добавление протонов, почему весь процесс и получил название pp цепочки. Заметим, что окончательным результатом этой цепочки реакций является превращение четырёх протонов в ядро гелия.

В звёздах большой массы этот процесс не очень эффективен и заменяется другим, названным CNO-циклом, в котором ядра углерода (С), азота (N) и кислорода (О) играют роль катализаторов. В химической или ядерной реакции катализаторы являются посредниками, ускоряющими ход реакции, но в конце процесса катализатор остаётся в целости. Именно так происходит в приводимой ниже CNO-цепочке:

12C + p13N + излучение,

13N → 13C + e+ + ν,

13C + p14N + излучение,

14N + p15O + излучение,

15O → 15N + e+ + ν,

15N + p4He + 12C.

Чтобы эти процессы заработали, требуется наличие небольших количеств ядер С, N, О, особенно ядер 12С 801. В конце цикла содержание С, N, О в звезде остаётся, однако, прежним. Критическая черта, отделяющая звёзды большой массы от звёзд малой массы, не является резкой и находится в области где-то вблизи М. Таким образом, Солнце и менее массивные звёзды используют водородное топливо в pp-цепочке, а более массивные, чем Солнце, звёзды в основном используют CNO-цикл.

801 Таким образом, CNO-цикл заранее предполагает наличие в звезде элементов, тяжелее 1H и 4He. В гл. 7 мы вернёмся к этому вопросу.

Реакции, входящие как в pp-цепочку, так и в CNO-цикл, происходят с разной скоростью. На самом деле, первая реакция в обоих процессах является самой медленной и определяет общую скорость синтеза. Характерное время колеблется от нескольких миллиардов лет для звёзд очень малой массы до сотен миллионов лет для сверхмассивных звёзд.

Далее мы увидим, что после завершения синтеза гелия в центре звезды начинается образование более тяжёлых ядер. Но эти процессы происходят существенно быстрее, чем синтез гелия. Следовательно, в течение большей части жизни звезды внутри неё синтезируется гелий. Возвращаясь к диаграмме Г—Р (рис. 45), мы видим, что в этом заключается причина того, почему главная последовательность содержит больше всего точек. Именно в звёздах на главной последовательности медленно, но непрерывно работает термоядерный реактор, превращающий водород в гелий.

Рис. 45. Диаграмма Г—Р

Соотношение масса – светимость для звёзд главной последовательности имеет вид

L ~ Mn,

где n=1,6 для звёзд малой массы (М ≲ М) и п = 5,4 для звёзд большой массы (М ≳ М).

Следовательно, если мы «поднимаемся» по главной последовательности от её конца В к другому концу А, нам встречаются звёзды все большей и большей массы и все большей и большей светимости. Можно провести и расчёты поверхностной температуры для моделей звёзд разной массы и проверить, согласуется ли вычисленная таким способом поверхностная температура с тем, что указано на диаграмме Г—Р. Такое вычисление обеспечивает проверку правильности теории в целом.

Признаком большого успеха современных вычислений является очень хорошее согласие между теорией и наблюдениями. В наши дни астрофизик, исходя из уравнений Эддингтона и используя наилучшие из имеющихся данных атомной и ядерной физики, осуществляет с помощью ЭВМ решение ряда дифференциальных уравнений. Действительно, многие тонкие теоретические детали звёздных моделей невозможно выяснить без помощи быстрых ЭВМ.

Можно осуществить и другую, экспериментальную проверку таких моделей, однако, мы отложим обсуждение этого вопроса до гл 11. КРАСНЫЕ ГИГАНТЫ

Как бы ни был велик источник ядерной энергии внутри Солнца, он конечен и рано или поздно иссякнет. То, как это может произойти, видно из рис. 46. В звезде появилось центральное ядро, первоначально состоявшее из водорода, но теперь благодаря работе термоядерного реактора превратившееся в гелиевое. Напомним, что для работы реактора необходима достаточно высокая температура. Не забудем также, что температура в звезде падает от центра наружу.

Рис. 46. В конце фазы нахождения на главной последовательности у звезды имеется гелиевая сердцевина и оболочка из водорода

Итак, на рис. 46 показана следующая ситуация. Внутри сердцевины звезды температура достаточно высока, так что реактор может работать, но там уже для него не осталось топлива. Вне сердцевины, в оболочке, полно водородного топлива, но там недостаточно горячо для того, чтобы этот водород смог принять участие в процессе синтеза. Таким образом, создаётся впечатление, что звезда подошла к моменту смерти, если иметь в виду её активную жизнь. С Солнцем подобное случится тогда, когда оно переработает в гелий 12% своего водорода.

Однако этот тупик временный, и проблема решается следующим образом.

Напомним (см. гл. 6), что за счёт генерации энергии в центре звезды обеспечиваются высокие температуры и давления, противодействующие силе тяготения. Если же источник энергии отключается, уже невозможно поддерживать давление на прежнем уровне. Хотя вся звезда чувствует возникший дисбаланс, последствия его наиболее серьёзны, естественно, для гелиевой сердцевины. Не имея возможности противостоять сжатию под действием собственных сил тяготения, сердцевина начинает сокращаться. Благодаря этому процессу в жизни звезды открываются новые интересные перспективы.

При сжатии гелиевой сердцевины она нагревается, как и всякий газ при сжатии. Проводя аналогию с тем, что было раньше, можно задать вопрос: «Не может ли гелий нагреваться до такой температуры, чтобы стать активным топливом нового процесса термоядерного синтеза?» Действительно, если это возможно, то в активной жизни звезды ещё не все потеряно! Она может продолжить генерацию энергии за счёт другого процесса синтеза.

Ответа на этот вопрос не было до середины 50-х годов. Дело в том, что экспериментальные данные в области ядерной физики показали, что при подъёме по лестнице масс к более тяжёлым ядрам все те ядра, которые непосредственно следуют за 4Не, являются нестабильными. Мы можем, например, попытаться слить вместе два ядра гелия с образованием ядра бериллия 8Ве. Однако ядро 8Ве разваливается сразу после образования! Поэтому процесс синтеза не может идти по такому пути. Аналогично, не существует стабильных ядер, состоящих из пяти частиц, которые могли бы образоваться путём добавления нейтрона или протона к 4Не.

Предложение, приведшее к решению проблемы, поступило на этот раз не от физика-ядерщика, а от астрофизика-теоретика. Фред Хойл, предложивший новую идею, сделал это потому, что он был убеждён: раз мы видим звёзды разных типов, кроме тех, которые есть на главной последовательности, значит, должны быть другие пути объединения ядер гелия, благодаря которым звезде удаётся поддержать работу своего термоядерного реактора, даже уйдя с главной последовательности. Хойл предположил, что объединяются на два, а три ядра гелия, образуя углерод в возбуждённом состоянии:

34He → 12C*.

Звёздочка здесь означает, что ядро углерода возбуждено, т.е. имеет большую энергию, чем обычное ядро. Однако ядро не может пребывать в таком состоянии очень долго; оно должно перейти в обычное состояние, отдав часть энергии:

12C*12C + излучение.

Но мы ещё не все сказали об этом процессе. Действительно, очень маловероятно, что может произойти тройное соударение, в котором три ядра гелия объединяются вместе. Напомним, что и в p—p-цепочке, и в CNO-цикле все четыре ядра водорода сливались вместе не сразу, а по этапам, причём на каждом этапе одновременно сталкивались две частицы. Одновременно соединение трёх ядер гелия за счёт хаотических движений происходит совсем не так часто. Чтобы компенсировать редкость такого события, сама реакция синтеза должна проходить очень быстро, так, будто ей отдаётся максимальное предпочтение. Физики называют подобные предпочтительные процессы резонансными реакциями. На рис. 47 показано, как попадает в резонанс обыкновенный маятник, если периодически толкать его грузик. Для того чтобы наступил резонанс, частота подталкивания грузика должна совпадать с собственной частотой колебаний маятника.

Рис. 47. Приложение периодически действующей силы увеличивает амплитуду колебаний простого маятника от первоначально небольших значений (а) до очень больших значений (б), если только период изменения силы подобран равным собственному периоду колебаний маятника

Аналогично, чтобы достичь резонанса в реакции синтеза, нужно, как показал Хойл, чтобы возбуждённое ядро углерода имело энергию, равную суммарной энергии трёх ядер гелия. Таким образом, предложение Хойла, обращённое к физикам-ядерщикам, заключалось в том, чтобы поискать такое резонансное возбуждённое состояние углерода в лабораторных экспериментах. Ядерщики были настроены очень скептически по поводу этого предложения, но все же стали искать. Коллеги Хойла из Калифорнийского технологического института, возглавляемого Уордом Уэйлингом, экспериментально подтвердили существование предсказанного возбуждённого состояния углерода! Это блестящий пример того, как астрономические соображения приводят к открытиям в фундаментальной науке.

В этой связи нелишне заметить, что человеческое тело состоит на 65% из кислорода и на 18% из углерода (оставшуюся часть составляет в основном водород). Если элементы типа кислорода и углерода должны образовываться в звёздах, то обязательно должен существовать путь продления цепочки нуклеосинтеза дальше 4Не. Это соображение дополнительно побудило Хойла искать путь синтеза углерода. Как отмечал Хойл, очень любопытно, что сам факт нашего существования, по-видимому, зависит от того, существует ли подходящий энергетический уровень в ядре углерода, тот самый возбуждённый уровень, о котором говорилось выше!

Три ядра гелия объединяются в ядро углерода при температурах в интервале от 100 до 200 миллионов градусов. Поэтому процесс синтеза начинается лишь тогда, когда в сжимающемся ядре звезды будут достигнуты такие значения температуры. Ядро гелия (когда оно было впервые открыто в лабораторных опытах по изучению радиоактивности) получило название α-частицы, поэтому упомянутая выше реакция иногда называется тройным α-процессом.

Производство энергии в процессе синтеза порождает большие температуры и давления, которые приостанавливают любое дальнейшее сжатие ядра звезды. Однако распределение давления во всей звезде должно подстроиться к новой ситуация. Если вспомнить, что давление на поверхности звезды равно нулю, становится понятным, что такая перестройка раздувает внешнюю оболочку до значительно больших, чем раньше, размеров. Звезда превращается в «гиганта».

Когда Солнце достигнет этой стадии, его размеры увеличатся настолько, что внешняя поверхность поглотит все внутренние планеты и Землю. При расширении оболочки звезда к тому же охлаждается. Поэтому внешняя поверхность звезды-гиганта имеет значительно более низкую температуру, чем у звезды на главной последовательности. Как следует из соотношения между цветом и температурой, обсуждавшегося в гл. 3, звезда при этом будет выглядеть красноватой.

Рис. 48. На диаграмме Г—Р показано распределение группы звёзд шарового скопления М3 вдоль гигантской ветви. (Верхняя область называется горизонтальной ветвью, и мы её не обсуждали в тексте)

На рис. 48 показана диаграмма Г—Р для звёзд шарового звёздного скопления М3. Видны как звёзды, находящиеся на главной последовательности, так и звёзды, переходящие от неё в правую сторону и превращающиеся в красных гигантов. Общее правило состоит в том, что чем массивнее звезда, тем быстрее она эволюционирует в сторону от главной последовательности. Это объясняется тем, что с ростом массы увеличивается и температура в центре, а следовательно, ядерное горючее расходуется быстрее.

Как уже догадался читатель, гелиевое топливо тоже когда-то приходит к концу, и звезда вновь попадает в ситуацию, которая была, когда истощилось водородное горючее.

Но ещё до того, как истощится весь гелий, звезде удаётся найти выход из такого положения тем же способом, что описан ранее: увеличить температуру центрального ядра за счёт гравитационного сжатия, пока не начнётся новая реакция термоядерного синтеза. В следующей реакции к уже образовавшемуся 12С добавляется ещё одна α-частица и образуется ядро кислорода:

12C + 4He → 16O.

Эта реакция становится возможной при температуре свыше 200 миллионов градусов. При ещё более высоких температурах за счёт последовательного добавления ядер гелия образуются ещё более тяжёлые ядра. Так получаются ядра

16O, 20Ne, 24Mg, 28Si, 32S,...,

т.e. ядра кислорода, неона, магния, кремния, серы и т.д. В конце концов, два ядра кремния сливаются, образуя ядро никеля, что происходит при температуре 3,5 миллиарда градусов:

28Si + 28Si → 56Ni.

По причинам, которые мы вскоре обсудим, в этом месте процесс синтеза приостанавливается. Звёздный термоядерный реактор не может работать с ядрами «группы железа», т.е. железом, кобальтом и никелем.

К этому моменту звезда достигает максимального размера, так как при истощении конкретного топлива сердцевина звезды сжимается (пока не поджигается новая реакция синтеза), а оболочка расширяется. Если в начале процесса эволюции звезда имела однородный состав и содержала преимущественно водород, то теперь в ней образовалась слоистая структура, напоминающая луковицу. Как показано на рис. 49, в центре содержатся самые тяжёлые элементы (из группы железа), а более лёгкие элементы последовательно образуют слои, если двигаться от центра наружу, к более холодным областям. Самая внешняя оболочка будет состоять преимущественно из водорода, так как там слишком холодно, чтобы могли идти какие-то реакции синтеза.

Рис. 49. Схематический разрез далеко эволюционировавшей звезды от центра к поверхности (луковичная структура звезды):Fe – железо; N1 – никель; Si – кремний; О – кислород; Ne – неон и т.д. КОНЕЦ ПУТИ

Оставим на время звёзды и вернёмся к тому вопросу, который ещё ждёт ответа: почему ядерный синтез прекращается на элементах группы железа?

Чтобы найти ответ, вспомним о двух фундаментальных силах природы, действующих между ядерными частицами. Сила электрического отталкивания действует между двумя протонами, но не затрагивает нейтроны. Ядерная сила притяжения в равной степени сильно действует между всеми протонами и нейтронами. Для маленьких ядер вроде 4Не вторая сила много больше первой, так что ядро крепко связано. Однако у очень тяжёлого ядра, содержащего, скажем, более 50 частиц, размеры также весьма велики. Но на больших расстояниях связывающие ядерные силы действуют не так эффективно. Кроме того, большое ядро содержит большое число протонов, так что их электростатическое отталкивание тоже становится заметным. Таким образом, ядра с массой, большей некоторой критической массы, уже не так сильно связаны, как более лёгкие ядра. Именно ядра группы железа являются самыми сильносвязанными. Если добавить в них ещё протонов или нейтронов, получатся новые ядра, уже не так сильно связанные, как ядра группы железа.

Рис. 50. Зависимость энергии связи на нуклон от числа частиц в ядре. Видно, что не все ядра одинаково стабильны. Кривая имеет максимум в области элементов группы железа (железо, кобальт, никель), которые являются наиболее стабильными. (Энергия выражена в мегаэлектрон-вольтах; 1 МэВ=1,6 • 10-13 Дж)

На рис. 50 графически проиллюстрировано это свойство ядер. На графике построена для разных ядер «энергия связи на один нуклон». Под нуклоном имеется в виду либо протон, либо нейтрон, а энергия связи – это то количество энергии, которое нужно затратить, чтобы вырвать нуклон из ядра. Как видно из рис. 50, энергия связи на нуклон для гелия больше, чем для водорода. Это означает, что для разбивания ядра гелия и превращения его в четыре ядра водорода нужно затратить энергию. Обратно, если соединить вместе ядра водорода, получится ядро гелия и некоторый избыток энергии. Именно по этой причине звёзды получают энергию за счёт реакции синтеза. Аналогично, процессы синтеза будут работать для более тяжёлых ядер до тех пор, пока мы поднимаемся по кривой энергии связи. Как только пик достигнут (в области группы железа), дальше можно только опускаться. И теперь уже синтез не помогает.

На самом деле, из графика на рис. 50 ясно, что основная часть энергии синтеза высвобождается на первых ступенях лестницы при превращении водорода в гелий. Энергия, выделяющаяся в остальных реакциях, намного меньше. Поэтому дальнейший синтез не слишком продлевает активную жизнь звезды в виде красного гиганта. В табл. 6 приведены те промежутки времени, которые тратятся на последовательное сжигание разного топлива в массивной звезде.

Таблица 6 Время сгорания разного топлива а термоядерном

синтезе для звезды массой 25 M Топливо Температура,

млн. градВремя Водород 60 7 млн. лет Гелий 240 500 000 лет Углерод 930 600 лет Неон 1750 1 год Кислород 2300 6 месяцев Кремний 4100 1 день

Для менее массивных звёзд эти промежутки времени значительно больше. Так, полное время нахождения Солнца на главной последовательности составляет примерно десять миллиардов лет, из них около 4,6 млрд. лет уже прошли. Таким образом, Солнцу предстоит ещё долгий путь, прежде чем оно превратится в красного гиганта и поглотит Землю! ПРОИСХОЖДЕНИЕ ЭЛЕМЕНТОВ

Описанный выше сценарий того, как звезда функционирует в виде ядерного реактора, подготавливает ответ на вопрос: где образуются химические элементы?

Ложка из нержавеющей стали, которой вы едите суп, несомненно, сделана из металла, добытого на Земле. Но откуда он там взялся? Он должен был содержаться в том первичном газовом облаке, из которого сконденсировалась Солнечная система. Но как металл появился там?

Теперь мы понимаем, что элементы могут создаваться в звёздах. Происходящий внутри красных гигантов процесс называется α-процессом, так как присоединение ядра гелия последовательно приводит к появлению все более тяжёлых элементов – 12С, I6O, 20Ne, 24Mg и т.д. Эти элементы образуют так называемую α-цепочку.

За счёт разных процессов в звёздах могут образовываться и элементы, не входящие в эту цепочку. Первое подробное исследование того, как образуются разные ядра в звёздах, было выполнено в 1950 г. Джеффри и Маргарет Бербиджами, Уильямом Фаулером и Фредом Хойлом. Эти астрофизики показали, что в звёздах могут создаваться не только ядра легче группы железа, но и более тяжёлые ядра, а также те, которые не входят в α-цепочку. Мы станем обсуждать детали таких процессов, получивших разные названия: быстрый процесс, медленный процесс, равновесный процесс и т. п. Конечно, чтобы построить ядро, не входящее в α-цепочку, нужно к существующим уже ядрам добавить несколько протонов и (или) нейтронов. Это может произойти на завершающей стадии жизни звезды виде гиганта, когда она уже не может поддерживать равновесное состояние. Но случится ли такое?

Да, как будет показано в гл. 8, звезда действительно достигает такого состояния, когда она уже не может оставаться в равновесии. Она просто взрывается. Действительно, для того, чтобы ядра, образованные глубоко в сердцевинах звёзд, когда-нибудь попали в межзвёздное пространство, необходимо, чтобы звёзды взрывались. Только убедившись в том, что подобное происходит, мы получим полный ответ на вопрос, откуда берутся тяжёлые элементы в межзвёздном газе.


    Ваша оценка произведения:

Популярные книги за неделю