355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Донелла Медоуз » Азбука системного мышления » Текст книги (страница 4)
Азбука системного мышления
  • Текст добавлен: 28 сентября 2016, 22:17

Текст книги "Азбука системного мышления"


Автор книги: Донелла Медоуз



сообщить о нарушении

Текущая страница: 4 (всего у книги 17 страниц) [доступный отрывок для чтения: 7 страниц]

Классический пример такой системы – работа комнатного обогревателя с термостатом. Он регулирует температуру в помещении, при необходимости включаясь и нагревая воздух. Как и все модели, представление термостата на рис. 15 сильно упрощено – реальные системы контроля температуры в помещениях могут быть гораздо сложнее.

Если температура в помещении падает ниже целевой температуры, заданной в термостате обогревателя, датчик улавливает разницу и подает сигнал включить нагревательный элемент, чтобы нагреть воздух в комнате. Когда температура в помещении достигает желаемого значения, термостат выключает нагревательный элемент. Это простой балансирующий цикл обратной связи, направленный на поддержание конкретного значения запаса; на схеме он показан слева. Если бы в системе не было никаких других составляющих, то ее поведение выглядело бы так, как показано на рис. 16: холодная комната, термостат установлен на 18 °С, обогреватель начинает греть воздух, температура поднимается. Когда фактическая температура срав-


Рис. 16. Холодная комната прогревается до температуры, установленной в термостате


няется с целевой, заданной в термостате, нагревательный элемент отключится, температура перестанет меняться и останется равной целевой.

Однако в системе этот цикл не единственный. Часть тепла уходит из помещения на улицу в виде потерь. Утечки тепла описываются вторым балансирующим циклом обратной связи, показанным на рис. 15 справа. Он неустанно пытается сравнять температуру внутри помещения с уличной – точно так же, как было с остывающей кружкой кофе. Если бы в системе был только этот цикл (то есть если бы не было обогревателя), тогда температура в комнате менялась бы так, как показано на рис. 17 – становилась бы все ниже и ниже, пока в итоге не сравнялась бы с уличной.

Комната не может быть идеально заизолирована, поэтому, если снаружи холодно, то утечки тепла из нагретой комнаты на улицу неизбежны. Но чем лучше теплоизоляция, тем меньше эти утечки, и тем медленнее будет понижаться температура.

А теперь вопрос: что будет происходить, если оба цикла в системе работают одновременно? Допустим, что теплоизоляция комнаты выполнена достаточно хорошо, а обогреватель имеет достаточную мощность. Тогда цикл, отве-


Рис, 17. Теплая комната постепенно остывает, пока температура в ней не достигнет 10 °С, как на улице


чающий за нагрев, будет сильнее, чем цикл, отвечающий за остывание. Вам удастся нагреть помещение, даже если поначалу было холодно и снаружи, и внутри. Температура будет меняться так, как показано на рис. 18.

Чем выше становится температура в комнате, тем больше будут утечки тепла на улицу, поскольку разность меж-


Рис. 18. Обогреватель поднимает температуру в помещении, несмотря на утечки тепла из комнаты на улицу


ду температурой внутри и снаружи растет. Обогреватель продолжает работать, пидавая тепла больше, чем уходит в виде утечек, температура будет расти и дальше, просто несколько медленнее, но в итоге все-таки достигнет значения, близкого к тому, что установлено в термостате. Затем обогреватель отключится, а после этого будет время от времени включаться снова, компенсируя потери тепла.

В нашем примере в термостате установлено целевое значение 18 °С, но реальная температура в комнате установится на уровне немного ниже 18 °С из-за утечек, которые не прекращаются ни на минуту. Так ведут себя все системы с соперничающими балансирующими циклами обратной связи, хотя иногда их поведение может показаться неожиданным. Образно говоря, система пытается наполнить доверху ведро с дырявым дном. Мало того, что ведро протекает, так еще и количество вытекающей жидкости управляется циклом обратной связи: чем больше воды в ведре, тем выше давление и тем быстрее вода утекает. В примере с комнатой мы пытаемся поднять температуру в помещении, чтобы внутри стало теплее, чем снаружи. Но чем теплее в комнате, тем больше утечки тепла на улицу. Обогревателю нужно время, чтобы после включения компенсировать эти потери, но в это время тепло все равно продолжает теряться. В доме с хорошей теплоизоляцией утечки тепла меньше, поэтому обстановка там комфортнее, чем в плохо заизолированном доме, даже если поставить в нем мощную печку.

С домашними обогревателями люди научились управляться, устанавливая в термостате температуру чуть выше, чем та, которой они на самом деле хотят добиться. Насколько выше – это уже другой вопрос, тут не все очевидно, ведь в холодный день утечки тепла на улицу больше, чем при хорошей погоде. Но обычно все-таки удается подобрать нужные настройки и обеспечить себе комфортную обстановку.

В других системах с такими же разнонаправленными циклами балансирующих связей подобное изменение запаса может сильно осложнить все попытки взять ситуацию под контроль. Представьте себе, что вам необходимо поддерживать определенный запас товаров на складе при магазине. Допустим, какое-то наименование почти распродано. Заказ новой партии требует некоторого времени, но ведь во время ожидания продажи будут продолжаться. Если вы не будете учитывать, сколько товара будет продано за время ожидания новой партии, ваш склад постоянно будет испытывать нехватку продукции. Точно такие же сложности возникнут при попытке постоянно иметь определенный запас наличных денег, удерживать уровень воды в водохранилище на какой-то отметке, поддерживать определенную концентрацию вещества, участвующего в непрерывной химической реакции...

Все эти примеры роднит один общий принцип, и еще один относится к системам с термостатом. Он формулируется так: информация, получаемая за счет обратной связи, может повлиять только на будущее, предстоящее поведение; внутри системы информация распространяется с запаздыванием, и воздействие не может быть настолько быстрым, чтобы моментально скорректировать поведение, вызвавшее текущую обратную связь. Лицо, принимающее решение на основе обратной связи, не может изменить текущее поведение системы, вызвавшее эту обратную связь; все принимаемые решения повлияют только на ее поведение в будущем.

Информация, которую передает цикл обратной связи (даже если эта связь не носит физического, вещественного характера), может повлиять только на будущее поведение системы. Сигнал невозможно доставить настолько быстро, чтобы это позволило скорректировать поведение, вызывающее текущую обратную связь. Даже если информация имеет абстракт ный характер, она передается в системе с определенныг/ запаздыванием.

Почему это так важно? Потому, что отклик всегда будет поступать с запаздыванием. Ни один поток не может повлиять на другой поток во мгновение ока. Влияние возможно только опосредованно, через изменение запаса, и только после некоторой задержки в принятии поступающей информации. В ситуации с наполнением ванны на то, чтобы оценить уровень воды и решить, как подрегулировать краны, уходит доля секунды. Во многие экономические модели заложена большая ошибка, поскольку их разработчики полагают, что потребление или производство могут дать мгновенный отклик, к примеру, на изменение цены. Это одна из причин, по которой реальные экономические системы ведут себя не совсем так, как предсказывают модели.

Принцип, который относится к системам с термостатом (вы могли бы и сами сформулировать его на основе нашего несложного примера), заключается в том, что вы всегда должны учитывать утечки, непрерывно происходящие в том или ином направлении. Если вы не будете брать их в расчет, вы никогда не достигнете желаемого значения запаса. Если в помещении надо обеспечить температуру в 18 °С, то в термостате нужно установить значение немножко выше, чем желаемое. Если вы хотите полностью погасить кредит (или страна хочет рассчитаться с долгами), то платежи надо увеличить настолько, чтобы покрыть те проценты, что будут начислены за время прохождения платежа. Если вам надо увеличить штат сотрудников,

В балансирующий цикл обратной связи, направленный на поддержание запаса неизменным, нужно вносить поправку на то, чтобы компенсировать влияющие на него же постоянные утечки, в каком бы направлении они ни происходили. Без такой поправки система промахнется мимо желаемого значения, и запас достигнет либо меньшей, либо большей величины.

то придется проводить наем быстрее, чем обычно, чтобы компенсировать уход тех сотрудников, кто уволится, пока вы нанимаете новых служащих. Другими словами, сложившееся у вас представление о системе – мысленная модель – должна включать все важные потоки. В противном случае поведение системы вас сильно удивит.

Прежде чем мы закончим изучение системы с термостатом, нужно проанализировать, как будет меняться поведение в зависимости от изменения температуры на улице. На рис. 19 показан характерный график изменений за сутки для нормально работающей системы с термостатом в условиях, когда ночью сильно холодает и температура падает ниже нуля.

У любого балансирующего цикла обратной связи есть некая переломная точка, после которой другим циклам, влияющим на запас, удается пересилить первый цикл и увести величину запаса в сторону от желаемого значения. В нашей системе с термостатом такое может произойти в том случае, если увеличатся утечки (на улице холоднее или теплоизоляция дома хуже) или обогреватель будет менее мощным – то есть либо цикл, отвечающий за нагрев


Рис. 19. Обогреватель поднимает температуру в холодной комнате, несмотря на то что постоянно происходит утечка тепла из помещения на улицу, где ночью температура существенно ниже нуля


воздуха в помещении, станет слабее, либо цикл, описывающий утечки тепла наружу, станет сильнее. На рис. 20 показано, что происходит в системе, если на улице температура точно такая же, как на рис. 19, а тепло теряется быстрее. В этом случае обогреватель не сможет справиться с утечками тепла. Цикл, стремящийся сравнять температуру в помещении с уличной, станет в системе доминирующим, и в комнате тогда будет очень неуютно.

Обратите внимание: изменение во времени переменных, изображенных на рис. 20, происходит с определенной взаимной зависимостью. Сначала и на улице, и в комнате одинаково холодно. Поток тепла от обогревателя больше, чем потери тепла из-за утечек, поэтому в помещении становится теплее. В течение одного-двух часов температура на улице еще довольно умеренная, обогревателю удается компенсировать потери почти полностью, и температура в комнате держится близко к желаемому значению.

Однако затем на улице холодает, утечки становятся сильнее, и обогреватель уже не в состоянии компенсировать все потери. Температура в помещении снижается. Когда к утру на улице снова устанавливается умеренная


Рис. 20. В холодный день обогреватель не справится со своей задачей, тепло будет улетучиваться из всех щелей


температура, потери тепла уменьшаются, и обогревателю, который на самим деле ьсе это время работал на полную мощность, удается понемногу поднимать температуру и нагревать комнату.

Изменения происходят по тому же сценарию, что и наполнение ванны: всякий раз, когда обогреватель дает больше тепла, чем теряется из-за утечек, температура в помещении растет. Верно и обратное: всякий раз, когда входящий поток становится меньше выходящего, температура снижается. Если вы потратите некоторое время на изучение изменений в системе по этим графикам и соотнесете их с потоковой диаграммой, у вас сложится довольно полное представление о структурных связях в этой системе и о том, как два цикла обратной связи меряются силами и тем самым вызывают изменение поведения во времени.

Запас, один усиливающий цикл и один балансирующий цикл обратной связи – так изменяются численность населения и величина промышленного капитала

Что будет происходить, если в системе на один и тот же запас влияют усиливающий и балансирующий циклы обратной связи? Это одна из самых важных структур, она часто встречается в реальной жизни. Помимо всего прочего, именно она описывает изменение численности населения и величины капитала в экономике.

Численность населения определяется усиливающим циклом, который описывает ее рост за счет рождаемости, и балансирующим циклом, который описывает ее уменьшение из-за смертности.

Если рождаемость и смертность постоянны (а в реальном мире так бывает редко), то поведение системы описать довольно просто. Население экспоненциально растет или же уменьшается, в зависимости от того, какая петля обратной связи сильнее: усиливающий цикл, ответственный за рождаемость, или балансирующий цикл, описывающий смертность.


Рис. 21. Численность населения зависит от усиливающего цикла, описывающего рождаемость, и балансирующего цикла, описывающего смертность


Например, в 2007 г. численность населения в мире составила 6,6 млрд человек, при этом коэффициент рождаемости обеспечивал примерно 21 рождение на тысячу человек в год (составлял 21 чел./тыс. в год). Коэффициент смертности составлял 9 чел./тыс. в год. Рождаемость была существенно выше смертности, и усиливающий цикл в системе был доминирующим. Если коэффициенты рождаемости и смертности останутся такими же, то ребенок, родившийся в 2007 г., к шестидесяти годам будет жить в мире с численностью населения вдвое большей, чем сейчас – это показано на рис. 22.


Рис. 22. Рост численности населения, если коэффициенты рождаемости и смертности останутся такими же, как в 2007 г. (21 чел./тыс. в год и 9 чел./тыс. в год соответственно)


Если в результате какой-нибудь страшной эпидемии коэффициент смертности резко увеличится, например, ди 30 чел./тыс., а коэффициент рождаемости останется прежним, в системе будет доминирующим уже другой цикл – описывающий смертность. В мире ежегодно будет умирать больше людей, чем рождается детей, и численность населения будет постепенно уменьшаться – это показано на рис. 23.

Поведение системы становится более интересным, если коэффициенты рождаемости и смертности со временем меняются. Когда ООН делала долговременные прогнозы изменения численности населения, предполагалось, что по мере промышленного развития стран средний коэффициент рождаемости будет уменьшаться (приближаясь к уровню воспроизводства, когда на одну женщину в среднем приходится 1,85 ребенка). До недавнего времени предполагалось, что коэффициент смертности тоже будет снижаться, однако медленнее, поскольку он и так невелик в большинстве стран мира. Однако из-за эпидемии ВИЧ/СПИДа теперь ООН выдвигает предположение о том, что рост ожидаемой продолжительности жизни в ближайшие 50 лет в ре-


Рис. 23. Уменьшение численности населения, если коэффициент рождаемости останется таким же, как в 2007 г. (21 чел./тыс. в год), а коэффициент смертности резко возрастет (до 30 чел./тыс. в год)


гионах, где распространены ВИЧ и СПИД, будет гораздо медленнее, чем оценивалось раньше.

Изменение потоков (рождаемость и смертность) вызывает изменение во времени величины запаса (численность населения), и график меняется. Если, к примеру, к 2035 г. рождаемость в мире снизится и сравняется со смертностью, и после этого соответствующие коэффициенты останутся неизменными, то численность населения стабилизируется (это показано на рис. 24). Рождение детей будет точно восполнять естественную убыль населения, установится динамическое равновесие.

Такое изменение в поведении называется обратимым доминированием циклов обратной связи. Доминирование – очень важное понятие в системном мышлении. Если один цикл доминирует над другим, он в большей степени определяет поведение системы. В системах зачастую бывает несколько конкурирующих петель обратной связи, работающих одновременно, но именно доминирующий цикл определяет поведение системы.

В нашем примере поначалу коэффициент рождаемости был больше коэффициента смертности, и доминировал


Рис. 24. Если рождаемость сравнивается со смертностью, численность населения стабилизируется


усиливающий цикл, ответственный за рост численности населения. В результате система демонстрировала экспоненциальный рост. Однако по мере того, как уменьшался коэффициент рождаемости, этот цикл постепенно становился слабее. Под конец он сравнялся по мощности с балансирующим циклом, отвечающим за смертность, и тогда установилось динамическое равновесие. При равновесии ни один из циклов не является доминирующим.

Обратимое доминирование присутствовало и в системе с термостатом: когда температура на улице существенно понижалась, утечки тепла в доме с плохо выполненной теплоизоляцией настолько усиливались, что обогреватель уже не справлялся с ними, поэтому в комнате становилось ощутимо холоднее. Если раньше доминировал цикл, отвечающий за нагрев, то потом основное воздействие ьа систему оказывал цикл охлаждения.

Сложное поведение систем часто объясняется переходом доминирования от одного цикла обратной связи к другому. В этом случае в разные моменты времени поведение системы определяют разные петли обратной связи.

Система, запасом в которой выступает численность населения, может вести себя ограниченным числом способов в зависимости от того, как меняются переменные, определяющие, кто «захватит управление» системой, – то есть коэффициенты рождаемости и смертности. В простой системе с одним усиливающим и одним балансирующим циклом таких ключевых переменных очень мало. Запас, управляемый усиливающим и балансирующим циклами, будет экспоненциально расти, если доминирует усиливающий цикл; будет постепенно снижаться, если доминирует балансирующий цикл; и не будет меняться, если циклы окажутся одинаковой мощности (все эти варианты показаны на рис. 25). Если же отношение между этими циклами


Рис. 25. Три возможных варианта изменения численности населения: рост, постепенное снижение или стабилизация на каком-то уровне


меняется во времени, то система будет демонстрировать то первый, то второй, то третий вариант поведения (это иллюстрирует рис. 26).

Выбранные сценарии поведения системы – если речь идет о численности населения – можно назвать провокационными, но зато они прекрасно иллюстрируют особенности моделей и показывают, каким в принципе может быть развитие событий. Всякий раз, когда вы имеете дело


Рис. 26. Обратимое доминирование циклов рождаемости и смертности


со сценариями (а ведь экономические прогнозы, такие как бюджет компании на будущий год, прогноз биржевого маклера – это все сценарии, равно как и прогнозы погоды, и предсказание изменения климата...), вопрос в том, насколько точно модель описывает реальную систему.

■ Могут ли движущие силы изменяться таким образом? (Как обычно изменяются коэффициенты рождаемости и смертности и как они в принципе могут изменяться?)

■ Если могут, то будет ли система реагировать именно так? (Действительно ли рождаемость и смертность изменяют запас – численность населения – так, как мы привыкли считать?)

■ Что управляет движущими силами? (Что влияет на коэффициент рождаемости? На коэффициент смертности?)

На первый из приведенных вопросов ответить с точностью нельзя. Можно лишь предположить, что будет в будущем, а такие предположения в принципе не могут быть точными. Даже если вы интуитивно или на основе опыта

в чем-то уверены, невозможно доказать (или опровергнуть) вашу правоту до тех пор, пика будущее не наступит. Системный анализ позволяет проверить ряд возможных сценариев, чтобы посмотреть, какими могут быть последствия при том или ином изменении движущих сил. В этом состоит одна из целей системного анализа. Но определить, насколько правдоподобен тот или иной сценарий, способен ли он воплотиться в жизнь, можете только вы сами.

Системно-динамический анализ не предназначен для того, чтобы предсказывать, что произойдет. Он позволяет выяснить, что может произойти, если те или иные движущие силы поведут себя так или иначе.

Системно-динамические модели рассматривают возможные сценарии будущего поведения и отвечают на вопрос «Что, если...?».

Второй вопрос – будет ли система в действительности вести себя таким образом? – требует научного подхода, чтобы оценить, насколько адекватна модель, насколько точно она имитирует поведение реальной системы. Независимо от того, как вы себе представляете будущее изменение движущих сил, будет ли система вести себя соответственно их изменениям?

В сценарии изменения численности населения, показанном на рис. 26, ответ на этот вопрос будет «В целом, да», потому что если рождаемость и смертность будут находиться именно в таком соотношении, как показано на графике, то численность населения будет расти или уменьшаться в соответствии с их изменениями. Модель изменения численности населения, приведенная в нашем примере, очень проста. В более сложных моделях, к примеру, есть деление на возрастные группы. Однако в общем и целом эта модель дает представление о том, по какому пути может пойти реальный мир: при одних условиях рост будет наблюдаться и в модели, и в реальной жизни, при

Вопросы для проверки адекватности модели

Чтобы определить, система перед вами или набор разрозненных деталей, проанализируйте:

1. Могут ли движущие силы изменяться таким образом?

2. Если могут, то будет ли система реагировать именно так?

3. Что управляет движущими силами?

других – ив модели, и в реальном мире численность населения будет уменьшаться. Конкретные цифры могут отличаться, но общие тенденции поведения описываются верно.

Наконец, третий вопрос. Что управляет движущими силами? Что заставляет меняться входные и выходные потоки? Этот вопрос связан с пониманием границ системы. Необходимо детально разобраться, независимы ли эти движущие силы или они находятся под влиянием других частей системы.

Полезность модели, ее адекватность зависят не столько от того, реалистичны ли сценарии изменения ее движущих сил (никто за это поручиться не может), сколько от того, реалистичны ли типы поведения, которые она демонстрирует.

Влияет ли как-нибудь численность населения на то, какими могут быть коэффициенты рождаемости и смертности? Влияют ли на рождаемость и смертность другие факторы – экономические, экологические, социальные? Влияет ли численность населения на эти экономические, экологические и социальные факторы?

Конечно, ответом на все эти вопросы будет «Да». Рождаемость и смертность тоже управляются циклами обратной связи. Как минимум на некоторые из этих циклов влияет величина численности населения. В нашем зоопарке систем «животное», отвечающее ла численность населения, – лишь один из фрагментов гораздо более сложной системы.14

На численность населения влияет другой очень важный фрагмент большой системы – тот, что описывает поведение экономики. В его основе лежат два других цикла обратной связи – усиливающий и балансирующий. Они образуют такую же структуру, как и та, что управляет численностью населения (посмотрите на рис. 27), и ответственны за такое же поведение.

Чем больше в экономике величина физического капитала (оборудование и заводы) и чем выше эффективность производства (объем производства на единицу капитала), тем больше годовой выпуск продукции (товаров и услуг).

Чем больше объем производства, тем больший процент может быть инвестирован в создание нового капитала. Это – усиливающий цикл обратной связи, подобный пик-


Рис. 27. Как и в структуре с численностью населения, экономический капитал зависит от усиливающего цикла, ответственного за рост (инвестиции в виде доли от годового объема производства), и балансирующего цикла, ответственного за снижение капитала (амортизация)


лу рождаемости. Инвестируемый процент капитала подобен коэффициенту рождаемости. Чем бильшую долю годо вого валового продукта инвестирует общество, тем быстрее растет капитал.

Физический капитал уменьшается из-за амортизации – выхода из строя, износа и устаревания оборудования. Балансирующий цикл, описывающий амортизацию, подобен циклу смертности. «Смертность» капитала определяется в соответствии со средним сроком службы капитала. Чем больше срок службы капитала, тем меньшая его часть ежегодно выбывает и подлежит замене.

Раз в этой системе структура такая же, как в системе, описывающей численность населения, то и поведение должно быть такое же. Современная история изменения капитала, как и численности населения, показывает доминирование усиливающего цикла, а это вызывает экспоненциальный рост. Будет ли капитал расти в будущем, останется ли постоянным или станет уменьшаться – зависит от того, будет ли усиливающий цикл доминировать над балансирующим циклом, описывающим амортизацию. Это, в свою очередь, зависит от:

■ процента инвестируемого капитала – какую долю ежегодного объема производства общество предпочитает не потребить, а вложить в дальнейшее развитие производства;

■ эффективности работы капитала – сколько капитала нужно для производства заданного объема продукции,

и, наконец,

■ среднего срока службы капитала.

Если реинвестировать фиксированный процент годового объема производства, увеличивая капитал, и вкладывать определенный процент в повышение эффективности капитала (то есть его способности производить продукцию), то величина капитала может уменьшаться, расти или быть постоянной в зависимости от того, каков срок службы капитала. Графики на рис. 28 показывают, как ведет себя система при разных сроках службы капитала. Если срок невелик, то капитал изнашивается быстрее, чем восполняется. Инвестиций не хватает на то, чтобы покрыть амортизацию, и экономика постепенно начитает приходить в упадок. Если амортизация и инвестиции компенсируют друг друга, экономика будет находиться в состоянии динамического равновесия. При более продолжительном сроке службы капитал будет экспоненциально расти. И чем продолжительнее срок службы, тем быстрее будет рост.

Это еще одно проявление принципа, с которым мы уже сталкивались: запас можно заставить расти не только за счет увеличений входного потока, но и за счет уменьшения выходного.

Точно так же, как на коэффициенты рождаемости и смертности влияли многие факторы, так и на объем произ-


Рис. 28. Изменение величины капитала в зависимости от продолжительности срока его службы. В системе с объемом производства на единицу капитала порядка 1 /3 и ежегодным реинвестированием 20% капитала при 15-летнем сроке его службы будет происходить лишь восполнение изношенного капитала. При меньшем сроке службы капитал будет постепенно уменьшаться, при большем – экспоненциально возрастать


водства на единицу капитала, процент реинвестирования и срок службы капитала влияет очень многое: банковские проценты, уровень развития технологий, налоговая политика страны, сложившиеся потребительские привычки, цены, и это далеко не полный список. Население тоже влияет на инвестирование в производство: от рабочей силы зависит объем выпуска, а растущие запросы потребителей способны привести к уменьшению процента реинвестирования. Годовой объем производства, в свою очередь, тоже может влиять на численность населения. В богатых странах, как правило, хорошо развито здравоохранение, поэтому коэффициент смертности ниже. Но и коэффициент рождаемости в них обычно меньше.

Практически в любой модели реальной экономики, рассчитанной на долговременную перспективу, должны присутствовать структуры, описывающие численность населения и капитал, причем должно учитываться и их взаимное влияние. Ключевой вопрос развития современной экономики – как поддержать усиливающий цикл накопления капитала на более высоком уровне, чем усиливающий цикл роста численности населения, чтобы люди становились богаче, а не беднее.15

Может показаться странным, что в нашем «зоопарке» структура, отвечающая за численность населения, и структура, описывающая капитал, отнесены к «животным» одного вида. Система производства, включающая заводы, партии товара и финансовые потоки, выглядит не слишком похожей на систему, описывающую динамику населения с появлением людей на свет, их старением, бесконечным круговоротом рождений и смертей. Однако с системнодинамической точки зрения эти системы, столь непохожие во внешних проявлениях, имеют общую принципиальную основу: структуры обратных связей. Обе они управляются усиливающим циклом обратной связи, который стремится увеличить запас, и балансирующим циклом, который стремится тот же запас стабилизировать. В обеих системах существует понятие старения. Сталелитейные заводы, токарные станки и турбины стареют и рано или поздно покидают этот мир – так же, как люди.


Рис. 29. Запас автомобилей на стоянке у дилера поддерживается постоянным за счет двух конкурирующих циклов балансирующей обратной связи: один отвечает за продажи, другой – за поставки


Теперь представьте себе управляющую систему обратных связей, предназначенную для того, чтобы поддерживать запас на складе достаточно большим – таким, чтобы можно было обеспечить полноценные продажи в течение десяти дней (схема показана на рис. 29). Дилер в любом случае вынужден держать склад, ведь заказы и поставки не могут совпадать день в день. Заранее предсказать желание покупателя приобрести машину в какой-то конкретный день просто невозможно. К тому же дилер должен учитывать вероятность задержек с поставками от производителя по тем или иным причинам, и на такой случай нужно иметь некоторое количество автомашин в качестве «буфера».

Милая девушка-менеджер, работающая в дилерской компании, отслеживает продажи (воспринимаемую ею покупательскую активность), и если ей кажется, что продажи растут, то производителю отправляется увеличенный заказ, чтобы привести запас автомобилей к новому желаемому уровню, достаточному для поддержания более активных продаж на протяжении десяти дней. Более высокие фактические продажи означают, что становятся выше


Рис. 30. Запас автомобилей на стоянке у дилера в ответ на возросшие запросы покупателей увеличивается на 10%, начиная с 25-го дня


ожидаемые продажи, то есть увеличивается разность между имеющимся и желаемым складским запасом. Увеличивается заказ продукции у изготовителя, увеличиваются поставки, увеличивается запас на складе, достаточный, чтобы поддержать более активные продажи.

Эта система представляет собой модификацию примера с термостатом: один балансирующий цикл обратной связи уменьшает величину запаса, а конкурирующая с ним балансирующая петля поддерживает запас на складе за счет восполнения проданных автомобилей новыми. На рис. 30 показано поведение системы в ответ на увеличение покупательской активности на 10%, причем это поведение вполне ожидаемо.

На рис. 31 в нашей простой системе появляется дополнительный фактор – трехдневное запаздывание – с этим явлением в реальной жизни сталкивается каждый из нас.


    Ваша оценка произведения:

Популярные книги за неделю