355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дмитрий Брашнов » Удивительная астрономия » Текст книги (страница 3)
Удивительная астрономия
  • Текст добавлен: 6 сентября 2016, 23:01

Текст книги "Удивительная астрономия"


Автор книги: Дмитрий Брашнов



сообщить о нарушении

Текущая страница: 3 (всего у книги 11 страниц) [доступный отрывок для чтения: 5 страниц]

Планеты-гиганты

Гиганты на сегодня являются самыми исследованными обитателями «вселенского зверинца». Гигантом является ближайшая к Земле экзопланета, которая обращается вокруг оранжевой звезды Эпсилон Эридана, что в 10,5 светового года от Солнечной системы. По массе этот объект в полтора раза превосходит Юпитер и имеет орбиту с радиусом в 3,4 астрономической единицы (510 млн км). Самая далекая из известных экзопланет – MOA-2008-BLG-310Lb, лежащая в 23 807 световых годах от нас, тоже относится к гигантам. Она весит чуть меньше Сатурна.

Впрочем, это не дает экзопланетам привилегий, так что ни одна из них пока не носит «нормального» имени. В названиях экзопланет записывается имя или номер звезды-«хозяйки», а затем ставится строчная латинская буква. Если планета обнаружена у этой звезды впервые, то пишется буква b. При открытии новых объектов в этой планетной системе им присваиваются по порядку буквы c, d и т. д.

Скажем, такое название, как OGLE-2006-BLG109Lс, можно расшифровать следующим образом: это планета, которая была открыта второй по счету у звезды из каталога небесных светил OGLE. Заглянув в каталог, несложно узнать, что звезда-«хозяйка» находится в созвездии Стрельца на расстоянии 4900 световых лет от нас. К слову, приведенная в качестве примера планета тоже является гигантом, она достигает по весу 75 % массы Сатурна.

Всех космических исполинов условно можно разбить на две группы – «газовые гиганты» и «ледяные великаны». К газовым гигантам относятся сверхмассивные планеты, которые образованы в основном водородом и гелием. Водород и гелий замерзают лишь при очень низких температурах, которые нечасто встречаются даже в глубинах космоса. Поэтому на таких планетах водород и гелий образуют густую атмосферу, которая с глубиной сгущается, постепенно превращаясь в сплошной океан. Этот океан вязкой массой обволакивает твердое центральное ядро, в котором из-за высоких давлений водород превратился в металл, подобный железу. В Солнечной системе есть две такие планеты: Юпитер и Сатурн.

Ледяные великаны чуть менее массивны, хотя они тоже гораздо крупнее Земли. Их название означает, что они сложены главным образом из более тяжелых веществ, чем водород и гелий, а точнее – из воды, метана, аммиака и тому подобных соединений, которые способны образовывать лед на поверхности этих планет. В пределах Солнечной системы к ледяным великанам относятся две самые далекие из больших планет – Уран и Нептун.

О свойствах исполинских экзопланет астрономы судят в основном по этой четверке гигантов из нашей планетной системы. Однако сделать правильные выводы не всегда удается. Дело в том, что в Галактике очень часто встречаются совершенно особенные, не известные в Солнечной системе гиганты, которые находятся слишком близко к звезде-«хозяйке». Напомним, что такие планеты астрономы назвали «горячими юпитерами»: эти гиганты велики, как Юпитер, но гораздо горячее его из-за близкого положения к светилу.

Любопытно, что горячие юпитеры всегда повернуты к своей звезде только одним полушарием. Видимо, на нем царит адская жара, тогда как второе полушарие – зона мрака и холода. По всей вероятности, это заметно влияет на погоду, в том числе на формирование полос облачности. Каждый, кто видел Юпитер, замечал на нем около 20 цветных полосок. Это пояса облачности, сложенные атмосферными потоками, облаками и мощными грозовыми тучами. На горячих юпитерах число таких полос будет очень мало, нередко около трех. Зато облачные пояса здесь окажутся невероятно широкими.

Таблица 2

Планеты-гиганты Солнечной системы

С полной уверенностью можно сказать лишь то, что у большинства планет-гигантов удастся обнаружить кольца. Хотя люди даже в телескопы долгое время видели кольца только у Сатурна, на самом деле, как показали космические фотографии и специальные наблюдения, «окольцованы» все четыре гиганта Солнечной системы.

Пояса облачности на Юпитере

Каждое кольцо представляет собой скопление космического мусора, то есть мелких астероидов, метеороидов и пыли. После Сатурна следующим по мощности и окраске колец идет Уран. Нептун и Юпитер обладают слабенькими, тонкими колечками, которые не удалось бы рассмотреть без помощи автоматических межпланетных станций.

Другой факт, который заранее известен науке о гигантских экзопланетах, касается наличия у них спутников. Все гиганты солнечной системы обладают многочисленной «свитой», причем некоторые из этих сателлитов настолько велики по размерам, что сопоставимы с планетами земной группы – Меркурием и Марсом. Столь внушительные спутники принято называть планемо (сокращение от англ. planetary mass object – «объект планетарной массы»). Рассказ о них – в одной из следующих глав.

Весьма редкими среди гигантских экзопланет Галактики являются «очень горячие юпитеры». Радиус их орбиты невероятно мал; такие объекты находятся ближе к своим звездам, чем Меркурий к Солнцу. Изза этого у подобных планет отсутствуют верхние слои атмосферы: газ просто снесен потоком звездного излучения. Типичный представитель группы – OGLETR-56b. Расстояние между планетой и ее звездой (желтым карликом, как и Солнце) составляет всего 6000 км. Почти столько же отделяет Москву от Владивостока. Неудивительно, что гигантская планета крутится с невероятной скоростью, здесь один год проходит за день: полный оборот совершается за 29 часов.

Астрономы предполагают наличие в Галактике совершенно особых планет, названных хтоническими. Хтоническая планета представляет собой бывший горячий юпитер, который полностью лишился газовых оболочек, так что от всей планеты уцелело лишь твердое ядро. Некоторые особенности Земли указывают на то, что она в далеком прошлом могла быть газовым гигантом. То есть мы сегодня живем на поверхности ядра исчезнувшего юпитера.

Наряду с горячими юпитерами астрономам известны и горячие нептуны, то есть гигантские планеты, по размерам похожие на Нептун, но при этом расположенные слишком близко к своей звезде (гораздо ближе 1 астрономической единицы) и поэтому нагретые до 600 °C и более. Таких экзопланет в Галактике должно быть немало.

Исследования показали, что две планеты вокруг оранжевой звезды HD 69830 скорее всего являются горячими нептунами. Есть предположение, что и третья планета из системы HD 69830 тоже относится к этому типу больших планет. Первые две, которые не вызывают сомнений, обладают массами в 10,5 и 12 раз большими, чем масса земного шара. Для сравнения: Нептун в 17, а Уран в 14 раз тяжелее Земли. Система удалена на 41 световой год от нашей.

Список других известных на сегодня горячих нептунов включает в себя экзопланету Gliese 436b. Находящаяся на расстоянии всего 4,5 млн км от своей звезды, она по весу достигает 7 % массы Юпитера, то есть весит в 22 раза больше Земли. Ее звезда – красный карлик – в 33 световых годах от нас, наблюдаемый в созвездии Льва.

Горячий гигант проходит по диску своей звезды

Другой наиболее вероятный претендент на звание горячего нептуна – экзопланета HAT-P-11b, поименованная так в честь системы телескопов HATNet, с помощью которых ее обнаружили. Масса экзопланеты в 25 раз превосходит земную. Объект находится в 8 млн км от своей звезды, вокруг которой совершает полный оборот за 118 часов. То есть Новый год на такой планете пришлось бы отмечать через каждые 5 дней. Звезда HAT-P-11 лежит в 119 световых годах от нас в созвездии Лебедя.

Происхождение горячих гигантов остается загадкой для науки. Почему плотный поток излучения (в том числе теплового) от звезды не разрушил этих газовых великанов? Ответа пока нет. Астрономы предполагают, что массивные экзопланеты сформировались на большом расстоянии от своих звезд, подобно планетам-гигантам в Солнечной системе, а затем по неизвестным причинам приблизились к своему светилу, перейдя на современные орбиты.

Орбита не является надежно проложенным «монорельсом», это воображаемая линия, и она способна претерпевать серьезные превращения с ходом времени. В Солнечной системе крайне нестабильной орбитой обладает Плутон. В течение ближайших 10 миллионов лет он будет двигаться более или менее спокойно, не отклоняясь от известной астрономам траектории. Но затем сменит орбиту. Подобные смены орбит происходят у него каждые 10–20 миллионов лет. Возможно, что с горячими гигантами когда-то произошло нечто подобное.

В лучах «железной» звезды

«Железные» звезды были открыты, что называется, «на кончике пера». Так говорят в тех случаях, когда какое-то природное явление сначала предсказывают и только потом обнаруживают в ходе космических исследований. Существование таких объектов предсказал в 1931 году выдающийся отечественный физик Лев Ландау (1908–1968), а затем его гипотезу развил академик Виталий Гинзбург (1916–2009).

Эти ученые вычислили, какие превращения станет претерпевать сверхмассивная звезда, если начнет сжиматься под действием собственной тяжести. Звездное вещество сожмется в настолько тесный и плотный комок, что в его сердцевине атомы переродятся в «кашицу» из тяжелых частиц – нейтронов. Поэтому в солидных научных трудах «железную звезду» называют также «нейтронной».

Понадобилось 30 лет, чтобы астрономы смогли обнаружить нейтронные звезды и лучше изучить их природу. Английская студентка Джоселин Белл в 1967 году проводила изучение радиосигналов, которые испускает центр Галактики, и обнаружила среди них нечто, похожее на радиопередачу инопланетной цивилизации. Сигнал представлял собой череду импульсов, повторяющихся с интервалом в 1300 миллисекунд, словно где-то глубоко в космосе работал мощный радиомаяк. Неужели с Землей пытаются связаться братья по разуму? Объекту присвоили номер LGM1 (от английского Little Green Men № 1 – «объект № 1 маленьких зеленых человечков»).

Дальнейшие исследования показали, что инопланетяне тут совершенно ни при чем. Сигнал имел природное происхождение, его испускал некий неизвестный астрономам темный объект, который решено было назвать пульсаром, то есть пульсирующей звездой. Тогда-то и обнаружилось, что пульсары представляют собой нейтронные звезды Ландау – Гинзбурга.

Откуда берутся в космосе пульсары? Пока в недрах нормальной звезды протекают термоядерные реакции, светило буквально распирает поток лучистой энергии: звезда испускает в мировое пространство свет, тепло и массу частиц. Но рано или поздно запасы водорода и гелия в ядре заканчиваются, и синтез начинает затухать. Звезда выделяет все меньше энергии, так что ее газовые оболочки уже ничто не распирает изнутри. Звездное вещество резко сжимается, вызывая грандиозный космический взрыв. Вспышка от этого взрыва настолько сильна, что затмевает собой свечение целой Галактики. Нередко после такого взрыва остается газовая туманность.

Это неудивительно, если учесть, что масса нейтронной звезды равна солнечной или превышает ее (не более чем в 2 раза), но вот размеры пульсара составляют лишь 20–30 км в поперечнике – вот до какой степени сжато вещество в этой звезде.

Снаружи пульсар покрыт толстой, двухкилометровой корой, которая состоит в основном из железа и никеля. Поэтому пульсар можно смело назвать «железной» звездой. Впрочем, поверхность объекта неоднородна, на ней имеются участки с разными свойствами, в том числе излучающее «оконце». Это небольшое пятно, которое интенсивно шлет радиосигнал или другие лучи во Вселенную. Поскольку пульсар вращается вокруг своей оси с безумной скоростью (1 оборот в секунду или даже доли секунды), то вращается и пятно. В результате астрономы на Земле улавливают импульсы с интервалом, который как раз и равен периоду вращения. Если звезда крутится со скоростью 1 об/с, то и радиосигнал будет поступать к нам с интервалами в 1 секунду.

Строение нейтронной звезды

Железную кору нейтронной звезды время от времени ломают «звездотрясения», вызванные какими-то загадочными процессами внутри объекта. Что творится там, под слоем металла, трудно сказать. Скорее всего, между корой и ядром из нейтронной кашицы лежат три «съедобных» слоя: «швейцарский сыр», «лазанья» и «спагетти». На самом деле, конечно, звезда – это не холодильник. И речь идет не о продуктах, а о тех изменениях, которые происходят с атомами вещества в глубоких слоях пульсара. В «сырном» слое атомы пока еще нормальные, шарообразные. В слое «лазаньи» они сплющены. В слое «спагетти» – вытянуты в ниточку.

Еще в 1054 году китайские астрономы заметили и записали в летописях появление на небе новой звезды, настолько яркой, что ее несколько дней подряд можно было видеть средь бела дня. Такие звезды называют сверхновыми. На самом деле перед нами не рождение нового светила, а гибель старого в виде грандиозного вселенского взрыва. Сверхновая, открытая китайцами, была вспышкой от такого взрыва в созвездии Тельца, который привел к образованию на месте звезды огромной туманности в 5000 световых лет от Земли. Эту газовую туманность из-за ее причудливой формы назвали «Крабовидной». В 1969 году стало ясно, что в центре туманности находится сжатый остаток погибшей звезды – пульсар PSR 0531+21.

Спустя всего год после открытия нейтронной звезды ученые заметили, что импульсы от нее поступают на Землю неравномерно, словно нечто встает на пути лучей, не пускает их к нам. Постепенно стала вырисовываться странная картина. Получалось так, что вокруг пульсара обращается некое невидимое с Земли тело, которое делает полный оборот на орбите за 11 дней. И поэтому на одиннадцатый день эта планета заслоняет собой источник излучения.

В существование планет вокруг пульсаров долго не верили. Разве может планета пережить такую катастрофу, как взрыв сверхновой? Однако подозрения отпали, когда в начале 1990-х годов удалось доказать наличие у пульсара PSR 1257+12 трех планет. Две из них по массе в 3 раза тяжелее Земли, а масса третьей близка к массе Луны. Нейтронная звезда лежит на расстоянии 1600 световых лет от Земли в созвездии Девы. Пульсар вращается вокруг своей оси со скоростью 1557 миллисекунд. Судя по слабому магнитному полю, возраст пульсара составляет 300 миллионов лет, то есть он родился после взрыва сверхновой, который произошел в эпоху появления на Земле первых ящеров.

Природа спутника нейтронной звезды в Крабовидной туманности до сих пор не установлена. Астрономы подозревают, что здесь никаких планет на самом деле нет, а перебои в импульсах происходят из-за сотрясений железной коры пульсара.

Впоследствии астрономы нашли в Галактике еще один пульсар (PSR B1620-26 в Скорпионе), определенно обладающий планетой. Разумеется, такие планеты погружены в вечную непроглядную тьму, отчего существование здесь живых существ исключено. Жизни требуется свет. Исключений на нашей родной Земле крайне мало, но и они лишь подтверждают правило.

Наиболее яркий пример – глубоководные «курильщики». Океанское дно во многом подобно суше, поскольку тоже покрыто горами и в том числе вулканами. В зоне подводных вулканов находятся горячие источники, которые выбрасывают из земных недр серные растворы. Сера и прочие вещества из горячих растворов служат пищей для бактерий, а сами микробы в свой черед становятся дежурным блюдом для других существ – червей, двустворок, погонофор, которые служат пищей рыбам, осьминогам, крабам.

Глубоководные «курильщики» и их розовые сады

Сообщества животных возле глубоководных «курильщиков», названные «розовыми садами», замкнуты, т. е. почти не зависят от окружающего мира. Местные обитатели свободно обходятся без солнечного света, поскольку бактериям не нужен фотосинтез для питания. Тепло в достаточном количестве поступает из вулканического очага. Строго говоря, подземное тепло даже избыточно, оно нагревает окружающую воду до +300 °C. Добавим сюда чудовищное давление, царящее в океанских глубинах. И вот, казалось бы, перед нами изумительный образец сообщества видов, которое может встречаться на планетах с самыми суровыми условиями. Однако остается вопрос, откуда здесь взялись все эти виды – черви, крабы, рыбы? Это изменившиеся, приспособившиеся к новым условиям потомки видов, которые когда-то населяли теплое, приветливое мелководье морей. Таким образом, история розовых садов восходит к прогретым солнечными лучами пастбищам водорослей и коралловым рифам, где условия для проживания весьма благоприятны.

Есть и другая причина сомневаться в обитаемости подобных планет. Ранее упоминалось, что нейтронная звезда испускает мощный поток лучей. Этот поток смертоносен. И если он фиксируется землянами с расстояния в тысячи световых лет, то нетрудно вообразить, какие опустошительные последствия он вызывает на поверхности планет, которые обращаются вокруг пульсара. Под таким лучевым «хлыстом» должны крошиться скалы, не говоря уже о гибели живых организмов. Так что планеты в системе пульсара крайне опасны для всего живого, и будущие космические путешественники будут обязаны избегать посадки на их поверхность.

Царство коричневого карлика

Самые легкие звезды в Галактике относятся к красным карликам. Они весят в 10 раз меньше Солнца. Однако ни один астроном не сомневается, что красный карлик – это все-таки звезда, пусть и худосочная. В середине 1990-х годов на небе были замечены загадочные «черные призраки», обладавшие значительными размерами и внушительной силой притяжения. Чтобы развить такую силу, требовалось иметь массу в десятки раз больше массы Юпитера, но в то же время в сто раз меньше массы Солнца. Что же это? Планеты или звезды?

Сегодня стало ясно, что странных призраков, а точнее коричневых карликов, нельзя причислить ни к тем, ни к другим. Скажем так: коричневый карлик – это несовершенная звезда. Он очень плохо рос, отчего не дотянул до той массы, при которой в ядре небесного тела протекают постоянные термоядерные реакции, то есть реакции превращения атомов, дающие свет и тепло. Вот почему коричневые карлики не светят и не греют, вот почему они черны.

Отличить их от звезд иногда бывает довольно сложно, но у астрономов есть пара секретов на такой случай. Прежде всего в спектре коричневого карлика хорошо заметен след присутствия на этом небесном теле металла лития. Этот металл широко используется людьми в промышленности, например для изготовления электрических батареек. Литий очень редко встречается на звездах, поскольку легко там разрушается. Он больше типичен для планет и коричневых карликов.

Так, с помощью литиевого теста была проверена принадлежность к коричневым карликам Тейде 1, как назвали самый первый объект этой группы, обнаруженный учеными в 1995 году в скоплении Плеяды. Свое название карлик получил в честь острова в составе Канарского архипелага: там находится обсерватория, с которой велось наблюдение за этим космическим телом.

Второй отличительный признак – обилие на многих карликах газа метана. На звездах метан не накапливается из-за их жара. Карлики сравнительно холодны, поэтому жадно накапливают метан в своих атмосферах. Первый метановый карлик, найденный астрономами, – это Gliese 229B, обращающийся вокруг звезды, красного карлика Gliese 229A в 20 световых годах от Земли. Этот объект, как и предыдущий, открыли тоже в 1995 году.

Коричневый карлик рядом со звездой Gliese 229A

Метановая атмосфера карликов очень плотная и содержит густой облачный слой. Через этот слой никогда не проникают лучи звезд. Облака на карлике находятся в постоянном движении, их гонят неистовые ветры. Здешнюю атмосферу немилосердно штормит, причем без передышки. Хорошей погоды на коричневом карлике не бывает никогда.

Впрочем, будущим звездоплавателям незачем бояться местных ураганов – ведь свой корабль люди все равно никогда не посадят на коричневый карлик. Его сила тяжести настолько чудовищна, что несчастные погибнут в ее тисках, прежде чем звездолет превратится в груду обломков. Вот почему космическим путешественникам придется обходить карликов стороной.

Коричневые карлики явно не желают мириться со своим «низким» статусом и активно обзаводятся газопылевыми облаками, в которых протекает формирование планет. Так, в созвездии Хамелеона целая группа карликов «выращивает» вокруг себя собственные планетные системы.

Гораздо сложнее отличить коричневого карлика от планеты. Наука слишком мало знает о загадочных «негорящих звездах», чтобы провести четкую границу между ними и настоящими планетами-гигантами. На галактической карте найдется немало таких «белых пятен» и вопросительных знаков.

Например, загадочный спутник звезды HD 114762, открытый еще в 1988 году. Тогда полагали, что таинственное тело – карликовая звезда. У многих звезд есть звезды-спутники. Такие странные союзы называются двойными звездами. К примеру, одно из ярчайших светил нашего небосвода Сириус сопровождает звезда из класса белых карликов под названием Сириус В. Это крохотный объект, совершенно невидимый невооруженным глазом. Нередко в системе двойной звезды оба светила оказываются довольно крупными и яркими. Кроме того, ученым известны совершенно фантастические «содружества» из трех и даже четырех звезд.

Вот почему наличие массивного спутника у HD 114762 никого не удивило. Однако более точные замеры, проведенные уже в наши дни, показали, что загадочное тело по массе в 11 или максимум в 13 раз тяжелее Юпитера. То есть перед нами уж точно не звезда. Но можно ли считать подобную махину планетой? Пока астрономы осторожно относят этот объект к коричневым карликам.


    Ваша оценка произведения:

Популярные книги за неделю