355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дмитрий Поспелов » Десять «горячих точек» в исследованиях по искусственному интеллекту » Текст книги (страница 2)
Десять «горячих точек» в исследованиях по искусственному интеллекту
  • Текст добавлен: 29 сентября 2016, 04:09

Текст книги "Десять «горячих точек» в исследованиях по искусственному интеллекту"


Автор книги: Дмитрий Поспелов



сообщить о нарушении

Текущая страница: 2 (всего у книги 2 страниц)

8. Многоагентные системы

Тема с таким названием возникла на конференциях, посвященных проблемам ИИ, где-то в первой половине 80-х годов. Причин для появления такой проблематики было несколько. Прежде всего, стало ясно, что эффективная реализация ряда важных для интеллектуальных систем процедур требует параллельной и асинхронной их организации. Подобные процессы интегрируют в себе активности отдельных центров, решающих свои локальные задачи. Но эти локальные задачи и пути их решения должны быть согласованы в границах некоторых глобальных целей.

Примерами процедур такого рода могут быть процедуры согласования мнений различных экспертов по поиску решения сложной многоцелевой задачи, согласование локальных локомоций при синтезе интегрального движения (например, движение робота, снабженного зрением и манипуляторами) или процедура коллективного взаимодействия интеллектуальных систем при решении в автономном режиме некоторой общей задачи.

Появление специальных архитектур, призванных поддерживать такую организацию процессов (например, параллельные вычислительные системы, в которых используется принцип «доски объявлений»), еще более усилило интерес к многоагентным моделям. Наконец, уверенность в том, что в нервных тканях живых организмов реализуется асинхронный и параллельный режим поиска решения, также оказала свое влияние на исследования в области многоагентных систем.

Нужно отметить, что идеология моделей такого рода во многом опирается на методы и результаты, полученные ранее вне сферы интересов собственно искусственного интеллекта. Еще в конце 50-х годов появились первые работы в области клеточных автоматов и моделей коллективного поведения автоматов. Эти работы заложили основу для появления многоагентных систем. Новое, что внесли в эти исследования специалисты по интеллектуальным системам, – это повышение «уровня интеллекта» агентов. Они стали способны использовать свои локальные знания для достижения своих целей. И задачи согласования, организации их целесообразного взаимодействия трансформировались на верхнем уровне в задачи согласования целей и знаний, т.е. стали напрямую соотноситься с проблематикой искусственного интеллекта.

Возникающие тут проблемы тесно связаны с проблемами динамических баз знаний, с необходимостью оценки конфликтных целей, противоречий в знаниях. Они также предполагают использование упоминавшихся выше процедур оправдания в системах имеющихся знаний и концептуальных моделей.

Сторонники этого нового системного движения надеются, что в начале следующего века будет создано новое научное направление – теория асинхронных конфликтующих процессов или что-то подобное с другим названием, которое еще не появилось.

9. Сетевые модели.

Интеллектуальные системы, основанные на правилах (продукциях), принесли не только радость решения ряда важных задач, но и породили сомнения в том, что именно они призваны остаться основными моделями представления знаний в интеллектуальных системах. Многочисленные дискуссии 80– х годов, проводившиеся специалистами в области ИИ по этому поводу, привели к укреплению сетевой парадигмы, несколько отодвинутой в сторону триумфальным выходом на сцену продукционных моделей. И хотя исследования в области семантических сетей, каузальных сетей и сетей другого типа продолжались, они были малочисленными и не слишком продуктивными.

Но к концу 80-х годов сетевые модели стали развиваться более быстрыми темпами. Этот процесс совпал с пробуждением интереса к давно забытым нейронным архитектурам, появлением транспьютерных систем и нейрокомпьютеров, а также с возвращением к работам, опирающимся на эволюционные модели и эволюционное программирование. Возник определенный бум, который был даже окрещен неодарвинизмом.

Если к концу первого этапа развития сетевых моделей (в основном в виде нейронных многослойных систем типа персептронов) наступило разочарование в их возможностях и простоте их аппаратной реализации, то в 80-х годах эти сомнения были отброшены. Комплекс исследований в этой области так возрос, что произошло практическое отпочкование специалистов, работающих в области сетевых моделей, от основного ядра тех, кто причисляет себя к искусственному интеллекту. У «сетевиков» появились свои журналы, они стали проводить свои симпозиумы и конференции и формировать свою терминологию. Этот разрыв нарастает, что по-видимому, приведет к возникновению двух наук, связанных с построением интеллектуальных систем. Одна из них будет по-прежнему опираться на уровень ментальных (информационных) представлений, а другая – на уровень структурной организации (по типу нервных тканей), порождающей нужные решения. Во всяком случае в 90-е годы вряд ли можно ожидать спад интереса к сетевым моделям и многочисленным нерешенным проблемам, связанным с их построением и функционированием.

10. Метазнания.

Метазнания или знания о знаниях – непременный атрибут познавательных процессов. В искусственных системах они в том или ином виде присутствовали всегда (например, в виде схем баз данных в базах данных или в виде стратегий управления в продукционных системах).

Но только с полным осознанием глобальной цели искусственного интеллекта, которую можно сформулировать, как создание метасистемы, способной порождать все необходимые конкретные программы деятельности, стало ясно, что уровень метазнаний сам по себе представляет немалый интерес для изучения. Метазнания тесно связаны с теми основными для человека процедурами, которые позволяют ему учиться новым видам деятельности. Именно поэтому интерес к метазнаниям тесно связан с глубоким вниманием к процессу обучения, которое характерно для начала 90-х годов.

Интеллектуальные обучающие системы, использующие метазнания для организации учебного процесса, ориентированного на конкретного обучаемого, стали первым объектом, в котором метазнания «овеществились», приобрели все необходимые качества для конкретного изучения. В 90-х годах мы, наверняка, станем свидетелями первых впечатляющих результатов в этой области.

Заканчивая эту статью, хочу подчеркнуть, что выбор описанных тут десяти «горячих точек» исследований в области искусственного интеллекта, конечно, субъективен. Другие специалисты могли бы назвать и другие важные направления в развитии интеллектуальных систем. Но я тешу себя надеждой, что пересечение их с упомянутыми в статье направлениями было бы значительным.


    Ваша оценка произведения:

Популярные книги за неделю