355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Розен » Химия — союзник медицины » Текст книги (страница 6)
Химия — союзник медицины
  • Текст добавлен: 9 октября 2016, 22:33

Текст книги "Химия — союзник медицины"


Автор книги: Борис Розен


Соавторы: Фаина Шарипова

Жанры:

   

Научпоп

,
   

Химия


сообщить о нарушении

Текущая страница: 6 (всего у книги 7 страниц)

Радиоактивный фосфор очень быстро разносится по всему телу. Уже через несколько минут после введения его можно обнаружить во всех органах и клетках, особенно много его накапливается в почках.

Применение в диагностике меченых атомов – фосфора-32, йода-131, натрия-24 и других основано на том, что они не отличаются от обычных элементов по своим химическим свойствам и также активно участвуют в процессах обмена в организме. Использование йода-131 позволило раскрыть секреты щитовидной железы, в которой, как известно, больше всего накапливается йода. Впервые удалось проследить весь путь этого вещества в желудочно-кишечном тракте и крови в составе иодидов и в самой щитовидной железе – при образовании сложных органических соединений – йодтирозинов и йодтиронинов. Радиоавтографы помогли изучить распределение йода в нормальной и измененной тиреоидной тканях.

Среди жизненно важных для организма химических элементов одно из почетных мест принадлежит железу. Ведь оно входит в состав гемоглобина, который содержится в эритроцитах. Поэтому представляет большой интерес возможность проследить за движением и распределением железа в организме. Опыты с применением радиоактивного железа показали, что этот элемент накапливается в печени и селезенке в виде белкового вещества – ферритина. Так меченые атомы помогают увидеть невидимое.

Рулевые удивительных превращений

Вода, как известно, состоит из водорода и кислорода. Но придется ждать долгие годы ее появления, если смешать эти два газа. Однако достаточно бросить в колбу, наполненную смесью этих газов, микроскопическую крупинку платины, как произойдет бурная реакция (взрыв) и образуется вода. Платина оказалась катализатором: это она заставила газы вступить в реакцию. Катализаторы применяются в промышленности при изготовлении кислот, удобрений, красок, полимеров.

Исследуя работу пищеварительных органов, ученые заметили, что сложные молекулы жиров, углеводов, белков, составляющих нашу пищу, расщепляются на более мелкие части под действием особых веществ – ферментов. Это катализаторы, без которых все превращения в организме шли бы настолько медленно, что жизнь была бы невозможной.

Ферменты в природе встречаются только в живых организмах; этим они отличаются от катализаторов, применяемых в технике. Ферменты – двигатели жизненных процессов, они помогают дышать, строить клетки и ткани. Если в организме не будет ферментов, он погибнет от истощения даже при избытке самых лучших питательных веществ, так как пища без ферментов не будет усваиваться.

При попадании пищи в желудок фермент пепсин ускоряет расщепление белков – разбивает их на полипептиды, а в кишечнике трипсин «рубит» их на еще более мелкие части – аминокислоты. Другие ферменты расщепляют углеводы на отдельные сахара, а жиры – на глицерин и жирные кислоты.

Для нормальной жизнедеятельности людей и животных нужна не только пища, но и воздух. Для дыхания также нужны ферменты.

В человеческом организме находятся тысячи различных ферментов и каждый из них имеет свою «специальность». Одни отщепляют фосфорную кислоту (фосфатазы), другие – водород (дегидрогеназы), третьи доставляют и присоединяют молекулу кислорода к окисляемому веществу (оксидазы).

«Природа ревниво оберегает свои тайны, – писал еще двести с лишним лет назад М. В. Ломоносов, – и ни малейшему в ней не должно приписывать чуду». Многое уже сделано в области изучения строения ферментов, однако ученым предстоит еще большая работа. Раскрыть строение молекул многих еще не исследованных ферментов – одна из серьезных задач современной науки.

Как же устроены ферменты? Одни из них – белки, другие же имеют в составе своих молекул кроме белков микроэлементы: железо, марганец, медь, цинк, серу.

Микроэлементы не всегда входят в состав ферментов, являясь вместе с ними «рулевыми» удивительных превращений. Но многие из них усиливают действие ферментов, т. е. являются их активаторами. Это молибден, ванадий, цинк, кобальт и др.

Однако есть и такие химические соединения, которые ведут себя по-разному: в одних случаях помогают ферментам, в других, наоборот, мешают, т. е. ингибируют процесс. Например, цианиды почти полностью блокируют дыхательный фермент, но повышают активность катепсина и некоторых других ферментов.

В крови человека и животных, в клетках растений имеется фермент, в молекулах которого присутствуют атомы цинка – карбоангидраза. Это вещество ускоряет выделение углекислого газа из легких и тканей, тем самым облегчает дыхание.

Дыхательный фермент содержит железо. Если его не будет, человек или животное погибает от удушья. Так бывает при отравлении цианистым калием, Он соединяется с железом, и человек моментально задыхается.

Фермент, помогающий переносу фосфора в наших тканях, содержит магний. Он не теряет своей чудодейственной силы, если вместо атомов магния в его молекуле появятся марганец или кобальт, железо или кальций. Доказано, что в некоторых ферментах один микроэлемент можно заменять другим.

Многие заболевания вызываются нарушением правильной работы ферментов или недостаточным их количеством в организме, поэтому при некоторых заболеваниях нужно блокировать фермент, т. е. уменьшить его активность с помощью каких-либо химических препаратов. Например, диакарб и гипотиазид угнетают активность карбоангидразы в почках, в связи с чем применяются в качестве мочегонных средств.

При некоторых заболеваниях, наоборот, нужно усилить действие ферментов. При расстройствах пищеварения, например, уже много лет пользуются пепсином и амилазой. Фибринолизин (плазмин), выделяемый из плазмы человеческой крови, применяют для лечения тромбоза коронарных артерий, тромбофлебитов. Не менее известен и фермент гиалуронидаза, увеличивающий проницаемость тканей и применяемый для рассасывания рубцов после ожогов и операций, при склеродермии.

Подобно ферментам, высокой биологической активностью обладают гормоны (от греческого слова «гормао» – побуждаю, возбуждаю). Вырабатываемые живыми клетками, они воздействуют на функции организма. Многие гормоны, как и ферменты, представляют собой соединения белкового происхождения, но в отличие от них не являются катализаторами, хотя и влияют во многих случаях прямо или косвенно на течение биохимических реакций в организме, ускоряемых ферментами.

У высших животных и человека гормоны вырабатываются в клетках эндокринных желез (железы внутренней секреции) – гипофиза, щитовидной железы, надпочечников, половых желез, поджелудочной железы и др. До сих пор до конца не ясен механизм образования гормонов, однако установлено, что при отсутствии в пище достаточного количества необходимых для жизни аминокислот их синтез нарушается.

Разгадка химической структуры гормонов в наш век позволила разработать методы их выделения из органов животных – поджелудочной железы, гипофиза, щитовидной железы. Многие гормоны химики научились получать искусственным путем: в 1954 г. синтезированы вазопрессин и окситоцин.

Большим триумфом созидающей науки явился синтез в 1963 г. одновременно в Англии, ФРГ и Китае столь сложного белкового гормона, как инсулин. Если вазопрессин и окситоцин состоят всего из девяти аминокислот, то молекула инсулина – из 51.

Заслуженным признанием пользуются в медицине кортикостероидные (вырабатываемые корой надпочечников) гормоны – кортизон, альдостерон, кортизол и полученные синтетическим путем преднизолон, дексаметазон, триамсинолон и др. Они используются для лечения самых разнообразных болезней: бронхиальной астмы, тяжелых ожогов, острого ревматического полиартрита, красной волчанки, эритродермии и др.

Широкое применение находят в медицинской практике гормоны и препараты гормонов эндокринной железы организма – гипофиза – АКТГ[8]8
  Адренокортикотропный гормон.


[Закрыть]
, гонадотропин хорионический, интермедии, а также гормональные препараты щитовидной железы.

Однако эти препараты, названные, глюкокортикоидами, в чрезмерном количестве вредны. У некоторых больных при длительном лечении ими наблюдаются нарушение обмена веществ, ожирение, разрыхление костной ткани, язвы желудка и кишечника, снижение способности сопротивления инфекции, медленное заживление ран.

До сих пор еще, к сожалению, мы не знаем точно, в каких случаях лечение гормонами помогает больному или, наоборот, повредит ему. Врачи лечат, по существу, вслепую, опираясь только на свой лечебный опыт и интуицию. Еще нет четких показателей, которые помогли бы врачу установить необходимую дозу гормонов и продолжительность их употребления.

В последние годы большие надежды медиками всех стран возлагаются на особую группу так называемых клеточных гормонов – простагландинов, способных в эксперименте оказывать мощное воздействие на функции сердечно-сосудистой системы, почек и воспроизводства.

Необыкновенный алфавит

Что полезнее для организма: белок куриного яйца или молоко? свиное сало или подсолнечное масло? говядина или баранина?

В 1880 г. русский ученый Н. И. Лунин решил проверить качество искусственного молока. Он отобрал десять мышей, посадил их в две клетки. Ежедневно в одни и те же часы в клетки ставили блюдечки с отмеренной порцией натурального и искусственного молока.

Спустя месяц мыши, которых кормили искусственным молоком, начали сильно худеть и чахнуть и вскоре погибли. Соседки же их прекрасно себя чувствовали и непрерывно прибавляли в весе.

Н. И. Лунин пришел к выводу, что кроме белков, жиров углеводов и солей в пище есть что-то такое, без чего организм существовать не может. Но что это за вещество?

На этот вопрос ответили ученые спустя только тридцать лет. В 1893 г. молодой голландский врач Эйкман решил покинуть свою родину и поселиться на острове Ява, в городе Батавия. На Яве, в Китае и Японии, во многих странах Южной Америки и Африки люди страдали от страшной болезни – бери-бери, она проникала повсюду, где население питалось главным образом рисом. Эта болезнь вызывала сначала онемение рук, потом ног, судорогу шеи, а часто и летальный исход.

Каких только лекарств не рекомендовал Эйкман больным бери-бери, обращавшимся к нему за помощью. Но все было напрасно. Болезнь упорно не поддавалась лечению. Однажды, проходя мимо курятника, который принадлежал одному из служителей больницы, Эйкман заметил, что несколько кур сидели нахохлившись, шеи их были искривлены судорогой – явный признак страшной болезни.

Много дней посвятил молодой врач наблюдению над курами и в конце концов нашел причину заболевания. Оказалось, что они получали остатки больничных обедов, которые готовили из белого очищенного риса. Но стоило ему примешать к рису немного отрубей (оболочки рисовых зерен), как болезнь немедленно проходила.

Значит, в отрубях содержится какое-то вещество, исцеляющее больных бери-бери. Но какое? Ответ на этот вопрос был получен в начале века. В 1912 г. польскому ученому Функу удалось выделить из рисовых отрубей и дрожжей вещество, которое излечивало от страшной болезни.

Пять лет упорного труда посвятил Функ своим опытам, проводившимся на голубях, которых он кормил одним белым рисом. Бери-бери сводила им лапки и шеи, сковывала движение и убивала. Наконец, тайна рисовых отрубей была раскрыта.

Четыре миллиграмма вещества, полученного ученым, излечивали больного голубя. Оно было названо витамином – веществом жизни (от латинского слова «вита» – жизнь).

Страшная болезнь цинга покрывает тело черными пятнами и ранами, вызывает кровотечение десен, постепенное выпадение зубов, распухание рук и ног.

Ученые доказали, что с цингой можно так же легко справиться, как и с бери-бери, но с помощью других веществ. Вместо рисовых отрубей больным следует давать свежую капусту, картофель, зеленый лук. Хорошим лекарством служат черная смородина, лимоны, помидоры, рябина.

Так же была побеждена пеллагра. В странах, где люди питались почти одной кукурузой, наблюдалось странное заболевание. Оно начиналось с расстройства кишечника, затем на теле проступали красные пятнышки, напоминающие солнечный ожог. Иногда заболевшие пеллагрой сходили с ума. Эта болезнь быстро проходила, если больного кормили печенкой, яйцами, поили молоком или пивными дрожжами.

Сокрытие витаминов уничтожило вспышки эпидемий этих страшных болезней, уносивших в прошлом тысячи жизней. Исчезли из корабельных журналов и дневников моряков записи о мучительной гибели товарищей. Теперь судно, уходя в дальнее плавание, имеет обильный запас овощей, фруктов, насыщенных витаминами.

Известны более двадцати различных витаминов. Они содержатся в различных растениях, входят в состав тела человека и животных. По постановлению международной комиссии по витаминам их решено было обозначить латинскими буквами. Так родился чудесный, алфавит, число букв в котором с каждым годом становится все больше и больше.

В сетчатке глаза находятся витамин А и некоторые близкие к нему по химическому составу органические вещества. Они помогают нам видеть при слабом освещении. Хотя его требуется очень малое количество, организм сам с трудом вырабатывает этот витамин, поэтому человек получает его с пищей. Витамин А находится в молоке, яйцах, некоторых овощах, в частности моркови и помидорах, содержащих каротин. Недаром это вещество называют провитамин А (приставка «про» означает «до»).

Если в организм с продуктами питания поступает больше витамина А, чем ему нужно в данный момент, то излишек откладывается в печени. Когда в пище его недостаточно, то организм использует эти запасы. При недостатке витамина А развивается куриная слепота. Человек ничего не видит при слабом освещении. Одновременно появляется и другое заболевание – ксерофтальмия (по-гречески – сухие глаза) – пересыхают и начинают нарушаться влажные слизистые оболочкй носа и глаз.

Ценный вклад в науку о витаминах внесли советские ученые, которые открыли витамин A2, разработали новый способ производства витамина B1.

В Институте биохимии Академии наук СССР в 1947 г. создан препарат витамин B12, без которого невозможно образование крови. Достаточно одной миллионной доли грамма этого витамина, чтобы защитить организм от возникновения злокачественного малокровия.

Ученые давно изучают витамины, которые содержатся в разных растениях. Исследуя состав дикорастущих плодов – айвы, грецкого ореха, груши, каштана, хурмы, яблони, произрастающих в лесах Крыма, Кавказа, Закавказья, Казахстана, химики обнаружили в них витамины B2, B12, В, С и др.

Оказалось, что у одних и тех же растений, произрастающих в разных районах, количество витаминов неодинаково. Так, в горах, особенно на альпийских лугах, найдено много трав, богатых витаминами, особенно B1, B2 и С. Чем выше над уровнем моря расположены луга, тем больше в травах витаминов. Много витаминов С содержится в крапиве, шпинате, луке. В сосновых и еловых иглах его в пять-восемь раз больше, чем в апельсинах и лимонах. Из одной тонны хвои можно получить 300 г этого витамина. Это примерно годовая потребность в нем двадцати человек. При недостатке в пище витамина С разрушаются зубы, ухудшается свертываемость крови.

Важную роль в нашем организме играет и витамин Д. Подобно кальцию, он входит в состав костей и способствует их правильному развитию. Потому его нередко называют кальциферол (от греческого – несущий кальций). При недостатке его кости ребенка становятся мягкими, легко изгибаются и могут деформироваться.

Витамин Д иногда называют витамином солнечного света. Дело в том, что лучи солнца помогают ему образоваться из твердых спиртов – стеринов, которые содержатся в коже человека. Вот потому детям необходимо как можно больше бывать на солнце. Однако сам организм вырабатывает недостаточно витамина и потому он должен поступать в детский организм с пищей. Особенно это необходимо на Севере, где солнечных лучей мало. Одной тысячной грамма кальциферола – препарата витамина – достаточно, чтобы защитить ребенка от рахита.

Не менее важное значение для нормальной жизнедеятельности организма имеет витамин Е, открытый в тридцатых годах американским ученым Эвансом. Он выделил его из пшеничных зерен и хлопкового масла. Витамин Е, подобно другим витаминам, участвует в процессах усвоения организмом человека и животных белков, жиров и углеводов. Девять десятых всего количества витамина Е находится в жировой ткани различных органов нашего организма.

Взрослому человеку нужно 20–25 мг этого витамина в сутки. В небольших количествах (1,5–4,5 мг на 100 г) он содержится во многих овощах и злаках. Больше всего его в салате – 14 мг на 100 г.

Особенно важен для нашего организма витамин К, который участвует в свертывании крови. Например, при порезе пальца в месте ранения кровь вскоре сворачивается. Образуется корочка, которая, как пробка, препятствует дальнейшему вытеканию крови. Если же витамина К в организме не хватает, то механизм свертывания крови нарушается и даже малейшая царапина может привести к значительной потере крови и даже к смерти.

Однако нет оснований для беспокойства. Витамин К (от немецкого слова «коагулятион» – свертывание) вырабатывается в достаточном количестве в нашем организме бактериями, живущими в кишечнике. Их нет только у новорожденных.

Ученые заметили, что у многих витаминов в молекулах имеются атомы микроэлементов, Так, в составе витамина B12 содержится более 4 % кобальта.

Выяснилось, что микроэлементы оказывают влияние на образование и поведение витаминов. Марганец усиливает действие В1 а фтор – А. Кобальт ускоряет синтез витамина А, а йод, наоборот, тормозит его. Одни микроэлементы принимают участие в создании молекулы витамина С, а другие – в ее разрушении.

В нашей пище не всегда присутствуют в достаточном количестве все нужные для организма витамины. Потому фармацевтическая промышленность производит специальные витаминные концентраты и препараты. Они лечат авитаминоз – болезнь, возникающую при недостатке в организме витаминов, они необходимы для слабого организма, нуждающегося в усиленном питании. Так микроэлементы и витамины помогают нам бороться с болезнями.

6. Соревнуясь с природой

Пластмассы и хирургия

Делать разные пластические операции люди умели еще в глубокой древности. Индийские жрецы владели этим искусством за тысячу лет до нашей эры. Если нужно было восстановить поврежденный нос, то вырезали кусочки кожи на лбу или щеке и затем накладывали на поврежденное место. Такие операции, применяемые и современными врачами, очень сложны и требуют большого хирургического умения.

Пластмассы, в частности полихлорвиниловые и полиакриловые пластинки, в определенной мере облегчили работу хирургов. Вырезанные из пластмассы вкладыши хорошо вживаются в ткани организма. Эластичность и легкость обработки пластиков позволяют изготавливать вкладыши любой формы и точно подгонять их к краям поврежденного органа. Обычно в пластмассовых вкладышах делают сквозные отверстия, через которые прорастает соединительная ткань, надежно скрепляя части поврежденного органа.

В Центральном институте травматологии и ортопедии с помощью пластиков исправляют отдельные дефекты лица – заменяют части носа, ушной раковины, глазницы.

Синтетическим клеем – остеопластом, предложенным еще в 1955 г. Т. В. Головиным и П.П. Новожиловым для склеивания осколков костей, пользуются при лечении переломов. Склеивание обеспечивает полное и правильное срастание, а срок лечения сокращается на 10–12 дней.

Хорошая совместимость полиакрилового пластика с соединительной тканью позволяет применять его и для исправления крупных дефектов черепа (в последнее время для таких операций стали применять фторопласт).

Пластмассы широко применяются для приготовления конструкций различных протезов в офтальмологии, травматологии и ортопедии. Из различного вида пластмасс изготовляют протезы пальцев, кистей рук и ног. Мало изготовить протез, чтобы он был похож на собственные пальцы, надо еще его так прикрепить к руке, чтобы искусственные пальцы сгибались, как свои. Было преодолено и это затруднение. Пластмассовые пальцы прикрепляют на оставшихся фалангах.

Протез конечности обычно готовится полым. Пластмассовые протезы – довольно сложные устройства. Так, например, протез кисти представляет собой полую гибкую конструкцию, обеспеченную специальным механизмом для сгибания пальцев.

Протезы рук, подобно собственным рукам, выполняют приказы мозга человека.

Легковесные пластики – пенопласты – позволяют делать протезы, которые легче деревянных или кожаных. Еще в начале 60-х гг. в Центральном институте травматологии и ортопедии подобрана рецептура изготовления легких материалов для протезов.

Часто к врачам-ортопедам обращаются люди с жалобами на боли в ногах, которые не позволяют им быстро ходить. Одни жалуются на боли в голеностопном суставе, другие – в подошве, третьи – около большого пальца. У некоторых боли бывают, в бедре, в коленном суставе, в области поясницы. Нередко причиной таких болей служит плоскостопие. Людям с плоской стопой или с искривлением большого пальца врачи выписывают специальную ортопедическую обувь, особые металлические или кожаные пластинки – супинаторы. Уже изготовляют супинаторы и другие приспособления для лечения этих дефектов из легких и эластичных пластиков.

В восстановительной хирургии теперь все шире применяется фторопласт – пластик, очень стойкий к действию кислот, щелочей, растворов солей. Из него делают эластичные корсеты, надутые воздухом, которые избавляют от лишних страданий больных, особенно при перевозке от места аварии в госпиталь или больницу. Так, например, корсет надевают на сломанную ногу, а чтобы она не сгибалась, его закрепляют специальными медными или алюминиевыми полосами либо скобами, которые удерживают ногу в напряженном состоянии. При тряске пострадавший не чувствует боли потому, что эластичный корсет смягчает и заглушает толчки.

Пластмассы приносят облегчение и людям, теряющим зрение вследствие развития катаракты. При этом заболевании мутнеет хрусталик. Еще сравнительно недавно помутневший хрусталик окулисты заменяли стеклянным. Теперь же их делают из чудодейственного акрилата – АКР-7. Они горазда легче стеклянных, не бьются, прозрачны, не вызывают никаких вредных реакций в глазу, долговечнее и гораздо доступнее стеклянных. Изготовление их настолько просто, что их можно приготовить в любой глазной больнице или амбулатории.

Зубы, которые не болят

Особенно широко стали применять полиакрилат в стоматологии для изготовления искусственных зубов и протезов.

Попытки заменить недостающие или сломанные зубы искусственными восходят к глубокой древности. Еще за несколько веков до нашей эры изготовляли искусственные зубы из слоновой кости или из зубов разных животных. Такие зубы прикрепляли шелковой ниткой к собственным зубам пациента.

Умели делать древние врачи и искусственные зубы из золота. В этрусских гробницах (этруски жили в Италии за тысячу лет до нашей эры) были обнаружены золотые зубные протезы.

В более поздние времена – в средние века и в эпоху Возрождения – искусственные зубы делали также из слоновой или бычьей кости, прикрепляя их к естественным зубам шелковой нитью или золотой проволочкой.

В середине XVIII века искусственные зубы стали делать из перламутра, а в конце того же столетия были изобретены фарфоровые зубы. Но потребовалось почти полстолетия, чтобы они окончательно вытеснили зубы, сделанные из костей животных.

В 40-х гг. прошлого века было сделано важное изобретение. Чарльз Гудьер нашел способ вулканизации каучука. Отныне твердый и хрупкий каучук стало возможным превращать в гибкую, упругую резину.

Каучук к концу прошлого столетия уже прочно вошел в обиход. Кроме школьных резинок, галош, макинтошей, подтяжек из резины научились изготовлять велосипеды и автомобильные шины, изоляционный материал и др.

Впервые каучуком для протезирования зубов воспользовался француз Делабар в 1848 г., а спустя два года американец Петмен ввел, его окончательно в зубоврачебную практику. Из каучука стали делать зубы и челюсти. Они верно служили людям, потерявшим свои зубы. Но у каучука оказались большие недостатки. Каучуковые протезы поглощают микробов, развивающихся в полости рта, раздражают слизистую оболочку. Поэтому поиски более совершенного материала для искусственных зубов и протезов продолжались.

Появление пластических масс открыло путь к успешному решению поставленной задачи. Однако далеко не сразу удалось подобрать пластмассу, которая удовлетворяла бы всем требованиям. Сначала пробовали применить для зубных протезов целлулоид, но вскоре выявилась его полная непригодность. Протезы быстро изменяли форму, часто ломались, сохраняли привкус и запах камфоры.

В 30-х гг. XX века было предложено делать зубные протезы из фенопластов. Однако и они не оправдали надежд, так как быстро ломались, меняли свою окраску. Неудачи не останавливали исследователей. Ведь у пластиков были все нужные качества: они в несколько раз легче металлов, устойчивы к действию кислот и щелочей.

Появившиеся полиакрилаты привлекли внимание зубных врачей и техников. Полиакриловые пластмассы хорошо окрашиваются в любые цвета, обладают приятным «живым» блеском, в отличие от каучука не поглощают остатков, пищи и микробов, плотно прилегают к мягким тканям. В то же время они эластичны и прочны.

Однако и из этого пластика не сразу удалось получить вполне пригодный для протезов материал. Разрабатываемые одна за другой рецептуры протезного материала не выдерживали испытаний. И только седьмая рецептура удовлетворила медиков и пациентов (АКР-7).

Надо было изготовить материал, который обладал бы нужной прочностью, не разрушался слюной, а также проверить, не будет ли АКР-7 вредно действовать на организм. Из протезного материала сделали вытяжки и добавили их в пищу кроликам, морским свинкам и крысам. У животных не было замечено каких-либо изменений.

Для того чтобы окончательно убедиться в безвредности акрилата для организма, небольшие кусочки пластмассы (примерно 2 г) вводили в подкожную клетчатку кролика и в течение полутора месяцев ежедневно проверяли его состояние. На протяжении всего опыта вес подопытного животного не уменьшился. Не было обнаружено никаких изменений и в его крови. Исследования на животных показали, что акрилаты совершенно безвредны.

Из пластиков делают теперь литые и штифтовые зубы, коронки, съемные протезы. Благодаря тому, что пластмассы сохраняют свой зеркальный блеск и не поглощают микробов полости рта, пластмассовые протезы и зубы могут служить длительное время.

Пластмассы уже почти полностью вытеснили из зубоврачебной практики такие дорогостоящие материалы, как золото, платину, серебро.

В наше время для пломбирования зубов применяются различные цементы, амальгамы из серебра и олова. Однако теперь все чаще стоматологи пользуются новыми препаратами, изготовленными из полимеров. Акриловый пластик хорошо прилипает к кости и тканям. Благодаря этому можно повысить качество пломбирования зубов.

Когда болит сердце

При некоторых заболеваниях сердца необходима операция. При врожденных и приобретенных пороках изменяются клапаны (сужаются, сморщиваются), что затрудняет кровообращение. Попытки удалить митральные клапаны и заменить их трансплантатами из аорты редко давали положительные результаты. Но на помощь пришли полимеры, из которых стали делать искусственные клапаны. Хирурги успешно пользуются митральными клапанами из фторопласта. Они хорошо переносят значительные перегрузки давления и препятствуют поступлению крови из левого желудочка в аорту.

В медицинской практике нередки случаи, когда больное сердце не позволяет делать операцию. Полимеры и здесь пришли на помощь медикам и больным: в клиниках появились аппараты искусственного кровообращения (АИК). Инженеры создали из пластмасс искусственные сердце и легкие.

Пользуясь АИК, хирурги могут проводить операции, связанные со структурными изменениями сердца, не останавливая кровообращения. Хирург может остановить сердце, выключить его из кровообращения, затем уже вскрыть полость и проводить операцию на «сухом» сердце.

Первым аппаратом искусственного кровообращения в нашей стране, созданным в 1927 г. советскими учеными С. С. Брюхоненко и С. И. Чечулиным, был автожектор, в течение нескольких часов успешно заменявший работу живого сердца.

Однако прошло еще почти 30 лет, прежде чем были созданы такие АИК, с помощью которых стало возможным оперировать на сердце человека. Первую такую операцию на сердце ребенка, страдавшего врожденным пороком, сделал 27 ноября 1957 г. академик А. А. Вишневский. В числе первых хирургов, сделавших с помощью АИК сотни операций на сердце, лауреат Ленинской премии профессор Н. М. Амосов. Вот как он описывает операцию в своей клинике: «Мельком взглянул наверх. Кругом сидят наши: врачи, сестры. Даже какие-то незнакомые. Не нравится. Как гладиаторы: смерть и мы. Не смотри. Это все пустяки:

– Давайте приключаться.

Это значит приключать АИК. Одна трубка вводится в правый желудочек – по ней оттекает кровь от сердца в оксигенатор – искусственные легкие. Затем она забирается насосом (это сердце) и гонится по второй трубке в бедренную артерию. По пути еще стоит прибор, который сначала охлаждает кровь, чтобы вызвать гипотермию, а потом в конце операции нагревает ее.

Приключение хорошо отработано, но требует времени. Все идет как по маслу. Трубка в сердце введена без капельки крови. Приятно. Умею. Не хвались, идучи на рать…

– Машинисты, у вас все готово?

– Ну, пускайте.

Заработал мотор… Проверка: венозное давление, оксигенатор, трубки, производительность насоса. Докладывают – нормально.

– Начинайте охлаждение.

Я должен ввести трубку в левый желудочек, чтобы через нее отсасывать кровь, попадающую из аорты, и, самое главное, – воздух, тогда сердце пойдет…

Все сделано и наступает перерыв. Еще минут десять, чтобы охладить больного до 22 градусов…

Только нам совсем нечего делать. Временное затишье перед схваткой. Просто стою и смотрю на сердце. Вижу, как оно сокращается все реже и реже по мере снижения температуры. Оно работает вхолостую – кровь гонит аппарат»[9]9
  Амосов Н. Мысли и сердце. М.: «Молодая гвардия», 1969, с. 69–70.


[Закрыть]
.

Теперь уже нет, пожалуй, ни одной клиники в нашей стране, где бы не производили операции на сердце с помощью АИК. Этот аппарат в скором будущем станет обязательным на станциях скорой помощи и поможет спасти жизнь людям, пострадавшим при катастрофах и авариях.

Однако АИК не может заменить больное или остановившееся сердце человека на долгий срок. Поэтому ученые и хирурги ищут пути создания миниатюрных протезов сердца, которые можно было бы «вживлять» в организм. За рубежом уже появились подобные протезы на полупроводниках размером с папиросную коробку. Были и удачные попытки «вживления» их на собаках. Одна из подопытных собак прожила с таким сердцем 14 часов. Она ела, настораживала уши, лизала руки своему хозяину, весело виляла хвостом. Иными словами, вела себя так, как любая другая собака с нормальным сердцем.


    Ваша оценка произведения:

Популярные книги за неделю