355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Кузнецов » Современная наука и философия: Пути фундаментальных исследований и перспективы философии » Текст книги (страница 2)
Современная наука и философия: Пути фундаментальных исследований и перспективы философии
  • Текст добавлен: 21 сентября 2016, 20:50

Текст книги "Современная наука и философия: Пути фундаментальных исследований и перспективы философии"


Автор книги: Борис Кузнецов


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 2 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]

Спираль философии

Мы уже упоминали о высказанной В. И. Лениным идее «кругов» в философии, образующих спираль ее исторической эволюции. Это понятие тесно связано с положением о связи философии с необратимым потоком научных открытий и обобщений. Несовпадение каждого нового витка с предыдущим, включение философии в общий необратимый процесс познания означает, что философия, переходя от одного витка к другому, охватывает, дифференцирует и объединяет все больший круг достоверных знаний о мире. Спираль, отображая прошлое философии, устремляется из настоящего в будущее, и при этом сохраняются специфические философские проблемы, несмотря на самые радикальные преобразования картины мира. Последние происходят сейчас очень быстро, чуть ли не каждый очередной номер научного журнала заставляет задуматься над определениями и проблемами пространства, времени, движения, вещества, поля, жизни.

Представление о будущем философии не может свестись к перечислению проблем, которые, по всей вероятности, будут поставлены перед ней с развитием конкретных наук в течение прогнозируемого периода. В этом смысле в философии не может быть чего-то аналогичного упомянутым выше задачам Гильберта, которые он поставил перед математикой в качестве прогноза для наступавшего тогда XX столетия. Здесь могут быть и проблемы, которые решались с древности до наших дней и которые по своей природе получают все новые и новые решения. Поиски решения этих проблем в философии сопровождались столкновением самых различных, нередко противоположных, концепций – материалистических и идеалистических. Это, однако, не значит, что меняются лишь ответы, а вопросы остаются одними и теми же. Переход от одного круга в спирали познания к другому, что составляет необратимое движение философской мысли, связан с изменением как вопросов, так и ответов.

В поисках специфических философских проблем мы всегда будем возвращаться к античным истокам философии, и в этом смысле прогноз сопровождается историко-философским аккомпанементом.

Как уже говорилось, первой из выдвинутых в Древней Греции философских проблем была проблема субстанции – тождественной себе основы бытия, предполагающей изменение, включающей понятия инвариантности и преобразования. Тем самым возникла проблема гетерогенности и гомогенности бытия, т. е. его структуры. С онтологической проблематикой была связана проблема истины, ее относительного и абсолютного характера, роли эмпирии и логики в поисках истины.

Для античной философии в целом, в ее зависимости от механико-математических, физических и биологических представлений того времени, характерен переход от статических понятий к динамическим. Ионийские философы искали в движущемся, гетерогенном мире субстанцию как нечто устойчивое, пребывающее. Для Фалеса, как уже отмечалось, это что-то чувственно постижимое, воздействующее на органы чувств и при том способное к качественным модификациям. Фалес находит такую субстанцию бытия в воде, как Анаксимен – в воздухе, Анакси-мандр – в апейроне. Вода способна принимать любую форму, она подвергается качественным преобразованиям, но сохраняет свою способность воздействовать на органы чувств. В постоянном включении гетерогенности и изменчивости в понятие субстанции как тождественной себе основы бытия состоит характерная черта античной мысли.

После ионийской школы, уже переходившей к гетерогенной и модифицированной во времени, но гомогенной в пространстве субстанции, Эмпедокл в V веке до нашей эры включил в концепцию субстанции многообразие в каждый данный момент без модификации во времени. Субстанция мира – сохраняющиеся во времени, не переходящие одна в другую стихии земли, воды, воздуха и огня. Гетерогенность субстанции в пространстве позволяет Эмпедоклу объяснять многообразие мира и его эволюцию, исходя из сохранения стихий. Позиция Демокрита была в этом отношении иной. Субстанция не имеет качественных различий ни во времени, ни в пространстве. Многообразие бытия в пространстве и его эволюция во времени объясняются только различием между атомами и пустотрй, между бытием и небытием, а также различием в расположении атомов.

Разграничение многообразия бытия и его единства и попытки выведения многообразия из единства лежат и в основе другого направления античной мысли, отказавшегося искать субстанцию в мире протяженных, чувственно постижимых объектов. Поиски пребывающего привели Пифагора к идее: основа бытия – это не меняющиеся предметы, а числа. Аналогичным образом – через устранение сенсуальной пестроты – Анаксагор пришел к понятию «нус» (это слово трудно перевести, настолько разнообразен вкладываемый в него смысл). «Нус» близок к понятию упорядоченности, структурности мира, качественных различий между рядами явлений и в то же время – к понятию управляющего миром интеллекта. А согласно Платону, идеи правят миром, ведь именно они объявляются основой бытия.

В философии Аристотеля протяженная материя противостоит форме, обладая «силой», т. е. способностью приобрести форму, возможностью бытия, в то время как форма обладает «энергией» – формирующим началом, превращающим эту возможность в действительность, вносящим в мир качественное разнообразие, гетерогенность. Впрочем, еще до того, как появилась подобная концепция (а ей предстояло стать господствующей в течение двух тысячелетий), греческая философия достаточно отчетливо противопоставила понятия гомогенности и гетерогенности субстанции. Речь идет о гомогенной в пространстве и во времени неподвижной субстанции элеатов и мире Гераклита, в котором нельзя дважды войти в одну и ту же реку, ибо «все течет, все изменяется». Концепция Гераклита не была историческим завершением выдвинутого античной мыслью круга представлений, но она явилась новым решением той апории равного себе и неравного, покоя и движения, которая побуждала античную мысль к движению по этому кругу.

Концепция Гераклита, согласно которому сущность бытия – это огонь, явилась решением данной апории потому, что она превратила само движение, саму трансформацию мира в его сущность. Огонь Гераклита не изменяется, он и есть само изменение, сгорание и уничтожение всего сущего. Подобное изменение самого понятия субстанции вместе со всеми проблемами, входящими в первый круг спирали познанпя, оказалось логическим завершением этого круга.

Такой оценке Гераклита нисколько не противоречит тот исторический факт, что его учение относится не к эпилогу, а к прологу античной философии. Последняя в качестве начала всего последующего прогресса философии отнюдь не была сокращенным выражением идей, предвосхищающих своей структурой их историческую последовательность. Как уже говорилось, чисто логические переходы еще не реализуют необратимости времени. Слияние логики с историей, необратимость исторического процесса связаны с переходами от одного круга к другому. Возникновение и в еще большей мере распространение философских концепций в древности и в средние века имело исторические, социальные корни. Но тогда еще не было того преобразования, которое положило начало следующему кругу развития философии.

Этот круг охватывает классический рационализм, атомистику XVII века, учение Спинозы. Мы знаем, что ход античной мысли состоял в поиске субстанции, объясняющей многообразие мира. До известной степени аналогичной этому была эволюция проблемы субстанции в эпоху Возрождения и в XVII веке. Декарт ограничил физику протяженной субстанцией, которой он приписал движение как присущее ей состояние, не требующее внешних воздействий. Гассенди вернулся к идеям Декарта, но уже на новой основе, с обобщением большого круга фактов, объясняя многообразие мира, как и античная атомистика, разграничением качественно неразличимых частиц и пустого пространства. Спиноза попытался ввести гетерогенность, структуру в само определение субстанции, отождествив бытие в целом – производящую природу (natura naturans) с дифференцированной, составленной из модусов, произведенной природой (natura naturata). Конечно, это достаточно далеко от отождествления творящей и изменяющей мир субстанции Гераклита с персонифицированным временем, огнем.

Наука XVII века сделала инерцию субстанциальной. То, что для древности было нарушением статической гармонии мироздания, стало основой его динамической гармонии. Динамизация пошла дальше. Признаками субстанции, вернее, ее атрибутами стали считать способность ускорения, силовые взаимодействия, массу. Но общей философской предпосылкой такого расширения и обобщения понятия субстанции стало ее отождествление с охватывающей пространственные и временные модусы natura naturata.

Следующий круг включает прежде всего диалектику Гегеля, в которой динамической стала сама логика бытия. Эта логика предъявляет претензию на роль движущей силы эволюции мира, на роль субстанции движущегося бытия.

Качественно новое понимание субстанции было дано в философии марксизма. Оно явилось завершением предшествующего развития философии и вместе с тем началом нового периода в истории познания и преобразования мира. У Маркса субстанцией становится само бытие, сама объективная реальность в единстве всех форм ее саморазвития, всего многообразия явлений природного и социального бытия. Развитие естественных наук в этот период связано с установлением иерархии форм движения, что стало возможным, как показал Ф. Энгельс в «Диалектике природы», благодаря естественнонаучным открытиям XIX века, таким, как принцип сохранения энергии, клеточная теория, эволюционная биология.

Дальнейшее развитие философии будет связано с углублением динамизации учения о бытии, с учетом того представления о гетерогенности и структурности мироздания, которое вытекает из развития науки XX столетия. В древности и в средние века основой представления о единстве и вместе с тем о структурности бытия была интегральная идея статической гармонии мира. В последующие столетия такой основой стали дифференциальные переходы от положения к скорости и от скорости к ускорению, дифференциальное представление о движении от мгновения к мгновению и от точки к точке, т. е. о непрерывном движении в гомогенном пространстве и времени. В XIX веке структурность мира и его единство были поняты в аспекте перехода одной формы движения в другую при их несводимости друг к другу. Вся эта эволюция демонстрировала динамизацию учения о пространственных свойствах субстанции, проникновение времени в это учение. Неклассическая наука XX века продолжает линию все более глубокой динамизации и структурализации картины единого бытия, установления все более тесной связи пространства и времени.

Вместе с тем сейчас структурализация картины мира, отображение его объективной дифференцированности и единства, происходит в условиях усиливающейся взаимосвязи философии и частных наук.

Античная философия включала совершенно конкретные, чувственные представления о структуре вещества. Спиноза отождествил natura naturans и сумму модусов natura natu-rata и вместе с тем разграничил их, сосредоточив внимание философии на natura naturans. Гегель приписал природе функцию остановившегося инобытия духа, и в его «Философии природы» интерпретация физики, химии и биологии исходит, по существу, из неподвижных и претендующих на окончательный характер представлений о процессах природы. В марксизме диалектика превратилась в учение о законах развития бытия и его отражении в логике развития понятий.

Приобщение к диалектико-материалистической философии раскрывает не научные истины в последней инстанции, а живую динамику науки, движение, изменение, трансформацию научных представлений.

Философские обобщения выступают как исходный пункт трансформации научных истин.

Но могут ли решения тех или иных философских проблем объяснить эволюцию науки? Может ли сквозной характер таких утверждений, как положение о единстве пространства и времени, о познании как отображении бытия, объяснить смену конкретных представлений о пространстве и времени, эволюцию познания?

Ведь каждый раз, когда мы говорим о субстанции, мы тем самым адресуем самой науке вопрос о том конкретном множестве модусов, которое здесь спрессовано в единое, всеохватывающее целое.

Понятие «вопрошающего инварианта», прогноза тесно связано с понятием абстракции как момента движения познания к богатству конкретных определений и опосредствований, с понятием, которое в своей рациональной форме было разработано К. Марксом. Это понятие, отнесенное к будущему философии, в его научной трактовке принадлежит диалектико-материалистической философии, исходящей из движения бытия и отображающего его движения познания. Метафизическая философия видела некоторое развитие лишь позади себя – историю заблуждений, через которые постепенно пробивалась истина, обретенная наконец в данной системе, которая оставляет будущему только шлифовку деталей и коллекционирование аргументов. Такая философия могла мириться с историей философии, но не могла включать прогнозы. Даже философия Гегеля была в этом смысле беспрогнозной: она видела в прошлом не заблуждения, а эволюцию истины, но эта эволюция заканчивалась самопознанием абсолютного духа. Только философия, рассматривающая логику как отображение бесконечного в своей сложности и в своем усложнении бытия, может включать прогнозы будущего.

При этом она исходит из того, что самые радикальные изменения теряют смысл, если нет чего-то постоянного, некоторого тождественного себе субъекта изменения, определенной основы для дальнейшего развития. Познание эволюционирует, но оно бы потеряло смысл, если бы исчезли понятия объекта познания, приближения к этому объекту. Они не могут исчезнуть, так же как не может в реальном движений исчезнуть его субъект. Отсюда следует, что прогнозы в диалектико-материалистической философии – это органичная часть истории познания, его предшествующего движения. Речь идет о прогнозах дальнейшей эволюции философских понятий, которые утверждают существование, познаваемость неисчерпаемого в своем бесконечном движении объективного мира.

Мы разграничиваем в движении философской мысли движение по кругу – как логически оправданную эволюцию идей и движение по оси спирали, от круга к кругу, совпадающее по направлению с необратимым потоком времени от раньше к позже. Этот процесс включает и переход от одного решения той или иной проблемы к другому, и переход к новой фундаментальной проблеме. При этом каждый акт «углубления разума в самого себя» ведет и к преобразованию картины мира. Такие преобразования необратимы. Поэтому они являются звеньями подлинной истории мысли. Слово «история» означает, что процесс направлен туда же, куда направлено и время, что процесс превращает раньше в позже. Вдоль оси философской спирали направлена необратимая эволюция познания, отображающая историю природы и человечества, историю познания и преобразования мира.

Современное естествознание

Особенности науки XX века

Скажем вначале несколько слов об уже обратившем на себя, вероятно, внимание читателя фактическом ограничении круга научных дисциплин, привлеченных нами к анализу воздействия науки на развитие философии. Здесь по преимуществу говорится о физике и о ее воздействии на другие дисциплины и отрасли знания. Общая картина современной науки может быть результатом ее анализа с различных точек зрения. Среди них имеет право на существование и анализ воздействия современной физики на познание в целом. Основа такого подхода – в особом, характерном для нашего времени, места физики в общей системе развивающегося знания. Это, конечно, не единственный аспект; для современной науки весьма характерно и то, что можно назвать гуманитаризацией, – возрастание удельного веса общественных проблем и растущее воздействие разработки общественно-научных проблем на естествознание. Однако и преимущественное внимание в данной книге к естественнонаучным и даже еще уже – физическим проблемам не лишает анализ общенаучного значения и права говорить о взаимосвязи науки и философии.

Роль физики в современной науке не похожа на роль механики в XVII-XVIII веках, когда механические законы претендовали на место того носителя космической гармонии, к которому в последнем счете сводятся все закономерности бытия. Но физика занимает в современной науке совсем иное место и по сравнению с XIX веком. Тогда физика противостояла диктатуре механики и, подобно другим дисциплинам, утверждала несводимость и специфичность своих законов. Сейчас она объединяет микромир и мегамир и в этом смысле, не покушаясь на специфичность других дисциплин, создает неклассическое представление о иерархии бытия, в которой Метагалактика сближается с элементарными частицами. Генезис такой, неизвестной прошлому, картины мира имеет важное значение для выяснения связи науки и философии. Подобная связь в определенной степени является импульсом и вместе с тем результатом распространения понятий современной физики на другие отрасли знания.

Такой процесс можно наблюдать, например в биологии, которую иногда считают преемницей физики, сменяющей ее на посту лидера науки. Если подобная перспектива в каком-то смысле реальна, то она совсем не означает вторжения биологических понятий, закономерностей и методов в физику. Вместе с тем указанная перспектива в основном связана с развитием молекулярной биологии, которая гораздо ближе в своих тенденциях и прогнозах к квантовой физике, чем к классической макроскопической биологии. Молекулярная биология – пример очень общей тенденции современной науки, тенденции, которую можно было бы назвать физи-кализацией науки, правда с одним существенным уточнением: такое название целиком относится к неклассической физике.

К этому следует добавить, что физикали-зация означает явное устранение из научной картины мира каких бы то ни было неизменных, априорных сущностей, ибо современная физика, объединившая космос и микрокосм, не оставляет ничего, что могло бы считаться «зафизической» (шире – «занаучной») сущностью мира. Никогда еще так ясно, как в современной науке, не было продемонстрировано, что субстанция неотделима от своих проявлений.

Следует подчеркнуть, что характеристика современной физики может быть лишь детализацией и демонстрацией эволюции общих особенностей науки XX века. Такие более общие особенности являются особенностями неклассической науки в отличие от классической. Но ответ на вопрос: «Что такое наука XX века?» – включает и другое – определение зависимости самого периода истории от состояния науки. Уже в XVII-XVIII веках эта зависимость была явной, а в XIX веке она стала в значительной мере определяющей. В 1886 году на чествовании французского химика-органика М. Шевреля (ему исполнилось сто лет) К. А. Тимирязев сказал юбиляру: «Дитя века разума, Вы – живое воплощение века науки».

Действительно, век разума, XVIII век, был периодом, когда идеи великих рационалистов предыдущего столетия приобрели историческое бытие и стали оказывать решающее воздействие на реальные судьбы людей. В этом столетии английская промышленная революция превратила рациональную схему мироздания – классическую механику в научную основу машинной индустрии. В этом же столетии плеяда великих мыслителей-рационалистов привлекла к суду отвлеченного разума все общественные институты, и вскоре Великая французская революция исполнила его приговор.

В XIX веке рационализм воплотился в систему представлений – стройную, детально разработанную, проверенную экспериментами и практикой. Эта система казалась непоколебимой в своих основах, хотя и претерпевала глубокие изменения. В XIX веке люди узнали о неевклидовой геометрии, в которой перпендикуляры к одной и той же црямой пересекаются или, наоборот, расходятся. Они узнали много нового и о себе. Общественные отношения, которые представлялись незыблемыми, оказались преходящими, чреватыми социальными революциями.

Наука в этот период знала о подвижности своего русла, о его поворотах. Представления о таких поворотах были обобщены в диалектической философии. Но повороты были более или менее спорадическими. Они позволяли науке забывать о них в течение долгих периодов сравнительно спокойного развития. И, что самое главное, они не оказывали быстрого и непосредственного воздействия на жизнь людей. Наука в течение десятилетий как бы отдыхала от каждого потрясения, спокойно развивая новые принципы, которые снова, как и прежние, уже ушедшие в прошлое, казались непоколебимыми. Результаты науки приобретали ореол очевидности, и стиль научного мышления в целом не был парадоксальным. В той или иной мере парадоксы всегда были свойственны науке. В свое время мысль об антиподах, живущих на другой стороне Земли, на «нижней» ее стороне, и не падающих «вниз», была невероятно парадоксальна. Парадоксальными были представления о движении Земли, об изменении видов живых существ. Но старые парадоксы исчезали, они растворялись в научном знании, претендовавшем на очевидную правильность.

XX век начался неисчезающими научными парадоксами. Наука XX века как бы для того, чтобы оправдать подобное хронологическое название, может начать свою историю с 1900 года, когда М. Планк нашел, что излучение света происходит не непрерывно, а минимальными порциями, квантами. Вскоре, в 1905 году, А. Эйнштейн разъяснил, почему свет распространяется с одной и той же скоростью относительно тел, движущихся навстречу световому лучу, и относительно тел, которые лучу приходится догонять.

Сейчас, почти столетие спустя, подобные парадоксы должны были стать трюизмами. Этого не случилось. Парадоксы квантовой теории и теории относительности переставали быть парадоксами только при переходе науки к еще более парадоксальным утверждениям. Началась цепная реакция парадоксов. Вскоре после Планка выяснялось, что свет не просто излучается порциями, но и состоит из частиц – квантов света, фотонов. А представление о неизменной скорости света привело к еще более парадоксальным утверждениям об изменении массы тела в зависимости от скорости его движения, о возможности освобождения очень большого количества энергии при уменьшении массы тела, о превращении частиц с ненулевой массой покоя в излучение, в частицы с нулевой массой покоя, о кривизне пространства, о расширяющейся Вселенной.

Цепная реакция парадоксов оказала большое влияние не только на стиль научного мышления, но и на бытие людей, на технику, на производство, на цивилизацию в целом. В науке XIX века марши сменялись привалами. Антракты были длительнее, чем сами акты. Теперь пьеса идет без антрактов, повороты науки настолько радикальны, что их воздействие продолжается долго, причем не замедляется, не затухает, а ведет к новым, еще более парадоксальным утверждениям. Для науки XX века характерен безостановочный марш.

Соответственно изменилось понятие великого открытия. Раньше величие научного открытия измерялось длительностью сохранения его фундаментальной роли. Великим открытием считали результат эксперимента или обобщение, приводившее к новой научной теории, надолго, быть может, навсегда, сохранившей неизменной свою классическую форму и служившей фундаментом для столь же прочных выводов. Сейчас величие открытия измеряется его динамическим воздействием на науку, радикальностью и общностью его резонанса, вызванных им дальнейших открытий, дополняющих, модифицирующих и изменяющих его. Рассказать о таких великих, фундаментальных открытиях – значит рассказать об их резонансе.

В науке XX столетия меняется область, в которой получают фундаментальные открытия или ждут их. Сейчас, в последней четверти века, преимущественно ждут: значение той или иной области науки определяется прогнозом, тем преобразованием картины мира, которого можно ожидать от ведущихся в этой области исследований.

В начале столетия такой областью стала электродинамика, затем – атомная физика, потом – физика атомного ядра. Теперь ею стала физика элементарных частиц и астрофизика. Сейчас на Земле начался атомный век – результат великих открытий первой половины XX века в области ядерной физики. Можно думать, что развитие теории элементарных частиц приведет к открытиям, которые станут в XXI веке основой после-атомной цивилизации.

Для XX века характерна огромная концентрация материальных и интеллектуальных усилий общества, направленных на развитие науки. Поражают масштабы общественного труда, уделяемого исследованию природы. Наблюдаются несопоставимые с прошлым темпы роста числа ученых, уже в начале века во много раз превзошедшие темпы роста числа представителей остальных профессий. Если так пойдет и дальше, то число ученых превысит число остальных людей на Земле. Может быть, это будут кибернетические роботы? Такой прогноз оставим авторам фантастических романов о будущем. Впрочем, наверное, и они не воспользуются им. Кибернетика не заменяет человека комбинацией электронных приборов, а вооружает его и позволяет ему сосредоточиться на наиболее достойной человека деятельности, на творчестве, на все более глубоком познании природы, на все более разумном подчинении природы целям человека. Но, может быть, необычайно быстрый рост научных кадров отражает начальный этап современной эволюции науки и впоследствии число ученых будет расти медленнее. По-видимому, в течение оставшихся лет XX века и в следующем столетии будет происходить с нарастающей скоростью более глубокий и органичный процесс включения исследовательских задач в содержание труда. При быстром и радикальном изменении технологии, основанном на переходе к принципиально новым физическим процессам, производство, его реконструкция и эксперимент сливаются воедино.

В XX веке человечество уделяет науке все большую часть своих трудовых ресурсов и в том смысле, что во много раз выросли масштабы экспериментальных установок. В 1610 году Галилей опубликовал результаты своих астрономических наблюдений, и это явилось началом астрономической революции. Ныне человек посылает в космос автоматические и обитаемые астрофизические обсерватории, лаборатории и вскоре, вероятно, разместит наблюдательные приборы на орбитах планет земной группы, а может быть, и на их поверхности.

Взгляд человека, направленный не в космос, а в микромир, – это также и широкие народнохозяйственные акции, связанные с большими затратами общественного труда. Чтобы «разглядеть» процессы, происходящие в областях порядка 10-15 см и 10-25 сек., необходимы колоссальные энергии частиц, бомбардирующих другие частицы и атомные ядра. Подобные масштабы энергии встречаются в космических лучах. Но ученым нужно свободно маневрировать высокими энергиями. Очень высокие, хотя и не столь огромные энергии получают в гигантских ускорителях элементарных частиц.

Вокруг таких ускорителей вырастают большие научные города. Когда говорят о научных центрах XVII века, в сознании возникает образ придворного кружка, где Галилей критикует аристотелевскую концепцию мироздания. Научный центр XVIII века ассоциируется с уединенным кабинетом Лагранжа, где он пишет формулы аналитической механики. Научный центр XIX века – это уединенная обсерватория или лаборатория Фарадея, где он в одиночестве наматывает проволоку на железный сердечник, или (в конце века) зал Сорбонны, где Пуанкаре излагает законы небесной механики, или Петербургский университет, где Менделеев рассказывает о периодическом законе.

Научный центр XX века – это большой город (его по традиции еще называют городком), где тысячи людей трудятся, чтобы найти новый элемент периодической таблицы или новую элементарную частицу.

Как же назвать XX век в его зависимости от науки? Веком атома? Веком космоса? Веком кибернетики?… Список возможных названий можно было бы значительно расширить. В литературе мелькают и другие названия: «век полупроводников», «век информации», «век биологии».

И действительно, разве не атомная энергия дала человеку новую энергетическую базу производства и разве не ее открытие явилось вместе с тем открытием еще более мощной силы – силы ассоциированной науки? Разве не атомная энергия внушила человечеству самые радужные надежды и самые тяжелые опасения?

А космические исследования, выход человека за пределы земной атмосферы – разве это великое событие мировой истории не характеризует наше столетие? А кибернетика? Ведь это она существенно влияет на характер труда, производства. Среди всех эпитетов нашего века, характеризующих специфику его науки, «век биологии» кажется особенно показательным. В середине столетия физиология, химия, физика, математика объединились, чтобы раскрыть загадку живого вещества и жизни. Если макроскопическое решение этой загадки в XIX веке позволило говорить о «веке Дарвина», то ее микроскопическое решение – картина молекулы живого вещества и закодированной в ней наследственности организма – дает право назвать наше столетие веком молекулярной биологии и ее неисчерпаемых результатов в генетике, медицине и т. д.

Но каждый из претендентов на обобщающее название века все же кажется недостаточным. И не потому, что наряду с атомной энергетикой выросли кибернетика, молекулярная биология, космические исследования. Перечисленных названий недостаточно потому, что между всеми отмеченными в них тенденциями существует глубокая связь и по исходным теоретическим позициям и экспериментальным данным, и по стилю научного мышления, и по экономическому и культурному эффекту. Забегая вперед, ограничимся кратким замечанием об общем эффекте науки XX века, характерном для всех отраслей производства, для культуры и стиля мышления. Этот эффект – несравнимый с прошлым динамизм развития различных областей общественной жизни, непосредственно зависящий от характера современной науки.

Наука XX века – прежде всего неклассическая наука. И не только потому, что она отказалась от классических устоев, претендовавших на окончательный и абсолютно точный характер. Она неклассическая по своему стилю. Именно поэтому она приводит не только к незатухающей скорости научно-технического прогресса. Она ускоряет и технический, и культурный прогресс.

В «Рассуждениях о науках и искусствах» Ж. Ж. Руссо вспоминал о пришедшей из Египта в Древнюю Грецию легенде о боге, создавшем науку. Этот бог, говорит легенда, был врагом человеческого спокойствия. Различие между наукой XX и XIX веков состоит в том, что старая наука не так явно и не так непрерывно «беспокоила» человечество, не так явно демонстрировала враждебную человеческому спокойствию тенденцию своего легендарного создателя. Динамизм науки в XX веке отчетливо виден, если сравнить то, что она получила от предыдущего века, и то, что она передаст следующему.


    Ваша оценка произведения:

Популярные книги за неделю