355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Сергеев » Тайны памяти (с иллюстрациями) » Текст книги (страница 3)
Тайны памяти (с иллюстрациями)
  • Текст добавлен: 10 сентября 2016, 16:25

Текст книги "Тайны памяти (с иллюстрациями)"


Автор книги: Борис Сергеев


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 3 (всего у книги 20 страниц)

Слуги и господа

Даже в самом густом и дремучем лесу растут не одни деревья. Кто же этого не знает? Другое дело мозг. Упоминание о том, что нервных клеток в нем меньше, чем ненервных, обычно удивляет. Откуда и, главное, зачем здесь эти посторонние клетки, ответить довольно трудно. Их два типа: нейроглиальные и сателлитные клетки, Функция последних ясна, они образуют оболочку вокруг нервных клеток и их отростков, как изоляционная лента, накручиваясь на нервное волокно в 5–10 слоев. К нейроглии относят три вида клеток: астроциты – звездообразные клетки с большим количеством отростков, которые далеко проникают в скопления нервных волокон (в отличие от нейронов отростки астроцитов синапсов, то есть соединений, не образуют. Зато у тех из них, что лежат на поверхности кровеносных сосудов, есть на конце расширения, так называемые концевые ножки); олигодендроциты – округлые или многоугольные клетки, имеющие, как свидетельствует их название, мало отростков, и микроглию – мелкие клетки разнообразной формы.

Достоверных сведений о функции этих клеток очень мало. Предполагают, что они служат для отростков нервных клеток подпорками, без которых нервные волокна, как виноградная лоза, тянуться вверх не могут, или просто заполняют между ними пустоты. Возможно, задача нейроглии отгородить нейроны друг от друга, оберегая от вмешательства в их жизнь соседей и от кровеносных сосудов: препятствуя проникновению из крови вредных веществ.

Наконец, очень вероятно, что глиальные клетки кормят нейроны. Ни один нейрон не соприкасается с кровеносным сосудом. Между ним и стенкой капилляра всегда лежит глиальная клетка. Только из нее нейрон и может черпать кислород и питательные вещества. Но если глиальные клетки являются кормилицами нейронов, то кто же главнее? Может быть, глиальные клетки, первоначально появившиеся как подсобные для обеспечения деятельности нейронов, развивая и совершенствуя свою функцию, в конечном итоге захватили власть, совершив в мозгу бескровную революцию?

Ничего удивительного в этом нет – кто кормит, тот и является хозяином положения. Недаром говорят, что кто платит, тот и музыку заказывает. Видимо, именно так рассуждал известный американский физиолог Р. Галамбос.

Высшее признание заслуг ученого – избрание в академию своей страны. Оценка научной деятельности, сравнение заслуг для ученых – дело нередко очень трудное. Каждая академия имеет свои критерии. В Соединенных Штатах на первое место ставится новизна идей, читай – их необычность. Не подвергая критерии подобного типа сомнению, скажем, что новизна еще не гарантирует бессмертия. Многие идеи, вспыхнув на небосводе науки, через мгновенье гаснут, как падающие звезды, не оставив после себя никаких воспоминаний. И все же критерий новизны является в Соединенных Штатах ведущим.

Вероятно, именно этот принцип, ставший стимулом для создания многих оригинальных теорий, побудил Галамбоса поставить физиологию мозга с ног на голову, произвести революцию, сделав хозяевами слуг, а бывших хозяев – слугами. Иными словами, американский профессор творческую роль отдал глии, а за нервными клетками оставил лишь функцию обеспечения взаимосвязи. Ученый утверждал, что восприятие внешнего мира, образование условных рефлексов, память – все основные функции мозга связаны не с нейронами, а с теми бесчисленными клетками, которые, заполняют пространство между ними. Правда, эти представления не получили дальнейшего развития в трудах ученого. Возможно, избрание в академию уничтожило стимул, и поэтому Галамбос отошел от поднятой им проблемы. К счастью, его усилия не пропали даром. Они вызвали интерес к глии, породили ряд новых теорий и исследований.

Активность системы нейрон – нейроглия постоянно ритмически колеблется, но глия всегда на полшага отстает от нейрона. Долго отдыхавший нейрон может под воздействием внешнего раздражения резко усилить свою активность, а окружающая глия будет еще некоторое время находиться в спокойном состоянии. К тому времени, когда глиальные клетки соберутся усилить свои обменные процессы, нервная клетка уже начинает успокаиваться.

Обменные реакции глии часто противоположны метаболизму нейрона. Так, если нервная клетка за час увеличивает запасы РНК (рибонуклеиновой кислоты) на 570 пикограмм (0,000 000 570 грамма), то в окружающей глии обнаруживается ее убыль на 55 пикограмм. А так как объем глии в 10 раз больше объема нейрона, умножим 55 на 10 и убедимся, что общее уменьшение РНК в глии составит 550 пикограмм. Вот откуда нейрон позаимствовал РНК. Нет, непохоже, что нейроны, идут на поводу у глии. Действуют они по собственной инициативе, совершенно не считаясь с глией, и, пользуясь своим положением, тянут из нее все, что им нужно. Хозяева, безусловно, нервные клетки. Как ни заманчиво пуститься в научные приключения по тропинке новой теории, однако придется вернуться к традиционным представлениям об интимных взаимоотношениях в центральной нервной системе.

Дубинушка

Представьте себе, что разумные существа, затерявшиеся где-то в глубинах туманности Андромеды, задались целью познакомиться с жизнью на планете Земля, имея для этого лишь прибор, способный, регистрировать электромагнитные колебания. Что узнают они о нас, людях?

Предположим, что с самых первых шагов им здорово повезет и приемная антенна окажется сфокусированной не на район Антарктиды, а на громоотвод Спасской башни Кремля. Смогут ли они, пользуясь только таким показателем, хоть что-нибудь узнать об успехах строительства социализма в нашей стране? Увы, ни о смене общественных формаций на нашей планете, ни о развитии многонационального искусства ее народов этим способом информацию получить нельзя.


Примерно в таком же положении находятся физиологи, регистрирующие электрическую активность мозга с поверхности черепа или вводя электрод в его глубины. Ученые это отлично понимают. Впрочем, регистрация электромагнитных колебаний кое-что дает. Понаблюдав за нами этак лет сто, жители Андромеды без труда узнали бы, что электромагнитная активность за этот период возросла в сотни раз. Пошарив своим индикатором по земному шарику, они нащупали бы «немые» зоны и области с высокой активностью. Заметили бы, что уровень ее периодически колеблется, волной распространяясь вдоль экватора с востока на запад. Кто скажет, что этого мало? Достаточный повод, чтобы открыть десяток специализированных исследовательских институтов для углубленного анализа и детализации полученных наблюдений.

Положение физиологов существенно не изменилось и когда возникла возможность записывать электрические разряды одной-единственной нервной клетки. Ведь экспериментатор чаще всего не знает, от какой клетки отводятся биопотенциалы и какую функцию она выполняет. Все же положение физиологов не совсем безнадежно. Они имеют известное представление о строении мозга и вооружены рефлекторной теорией его работы. Еще 30 лет назад академик М.Н. Ливанов ввел электроды в зрительную и слуховую области мозга кролика и стал сочетать ритмические вспышки света и звука. Ему удалось заметить, что после нескольких сочетаний слуховая область мозга стала отвечать электрическими реакциями на вспышки света. Ученый как бы выработал биоэлектрический условный рефлекс. С тех пор проделаны сотни экспериментов. Условный рефлекс – явление сложное. В его образовании принимает участие целый комплекс мозговых образований. Поэтому, изучая работу мозга, исследователям хотелось ввести в него как можно больше электродов, получить сведения от различных его отделов. Не было только приборов, способных одновременно регистрировать множество реакций. Когда же они появились, ученых ждало разочарование: увидеть какие-то закономерности в хаосе зубцов записи биотоков снова не удалось. Неудача не обескуражила ученых. К анализу записанных на бумаге кривых подключили разные анализаторы, умеющие подсчитывать частоту колебаний, а полученные результаты ввели для дальнейшей обработки в электронно-счетную машину.

Поначалу больших достижений не было. Однако лаборатория М.Н. Ливанова продолжала поиски. У кролика вырабатывался оборонительный условный рефлекс. В камере включался свет, а через несколько секунд животное получало удар электрического тока в одну из передних лап. Все это время от кроличьего мозга по 50 электродам отводились биотоки. В том числе из зрительной и двигательной областей, из того места, при раздражении которого передняя лапа начинала дергаться. Исследователи интересовались синхронностью работы мозга. Если вглядеться в электроэнцефалограмму (запись биоэлектрических реакций мозга), можно заметить, что часто многие ее линии очень похожи: зубчики то все вместе устремляются вверх, то, как по команде, поворачивают остриями вниз. Удивительное заключается в том, что биотоки нередко отводятся от весьма удаленных друг от друга областей мозга.

Какой смысл в синхронизованной деятельности мозга? Может быть, она свидетельствует о совместном труде его отделов над организацией какой-то определенной функции? Если эти предположения верны, тогда можно ожидать, что образование условного рефлекса будет сопровождаться синхронизацией электрических реакций в зрительной и двигательных зонах коры больших полушарий кролика.

Оказалось, что по мере выработки условного рефлекса между двигательным центром конечности и зрительной областью возникает синхронизация. Чем прочнее становится условный рефлекс, тем чаще возникает синхронизация. Однако нередко условный рефлекс бывает и в отсутствие синхронной деятельности этих областей мозга.

У исследователей могло возникнуть подозрение, что электроды недостаточно точно попали в области мозга, ответственные за осуществление условного рефлекса. Действительность оказалась сложнее. Во-первых, выяснилось, что важна только синхронизация одного из относительно медленных ритмических колебаний, так называемого тета-ритма, то есть электрических колебаний с частотой от 4 до 7 в секунду. Во-вторых, заметили, что для осуществления условного рефлекса на вспышку света мало одинаковой частоты ритма в зрительной и двигательной областях. Необходимо, чтобы эти ритмические колебания точно совпадали по фазе, то есть чтобы подъем кривой, достижение ею высшей точки и последующее падение в обеих областях мозга совершались строго одновременно.

Дальнейшие исследования подтвердили, что в начале выработки условного рефлекса, как только кролика сажали в камеру, в зрительных и двигательных областях усиливался тета-ритм, устанавливалась одинаковая его частота и начинала совпадать фаза колебаний электрических потенциалов. Позже, когда условный рефлекс упрочивался, совпадение фаз электрических колебаний возникало только в момент действия условного раздражителя. А что, если теперь вспышку света не сопровождать током? Очень просто, он постепенно перестанет вызывать перестройку ритмов, совпадение их по фазе, и условный рефлекс угаснет.

Из этих опытов следует, что для осуществления условного рефлекса, то есть для перехода возбуждения из зрительного центра в двигательный, необходима перестройка ритмов мозга – установление единой частоты и совпадение фаз колебаний. Опыты дают основание высказать интересные предположения и о природе внутреннего торможения, процесса, противоположного возбуждению. Возможно, оно всего лишь разлад в ритмических процессах. Насколько верно такое предположение, сказать трудно. Однако в его свете получают объяснение многие загадочные явления работы мозга. Например, вопрос о локализации торможения.

Где оно возникает? Когда у человека угашают условный рефлекс на раздражение какого-то участка кожи, он не перестает ощущать ни прикосновения к нему, ни воспринимать тепло или холод. Следовательно, чувствующие клетки кожного анализатора в головном мозге работают нормально. Где же тогда гнездится торможение?

Предполагают, что оно обитает где-то на пути от воспринимающих клеток к исполнительным. Но это еще окончательно не доказано. Пока никто не обнаружил, где прячется торможение, не схватил, так сказать, за руку. Может быть, тормозной эффект действительно всего лишь разлад во взаимодействии двух областей мозга и искать его местообитание бессмысленно?

Многие наблюдения свидетельствуют о том, что тета-ритм служит для передачи возбуждения по структурам центральной нервной системы. Необходимость единого ритма для обмена информацией понятна. Два велосипедиста могут спокойно беседовать между собой только в том случае, если движутся с одинаковой скоростью. Речь, записанная на магнитную пленку, покажется неразборчивой, если ее воспроизвести быстрее или медленнее, чем во время записи.

Так же понятна необходимость совпадения фазы. Нам нужно, чтобы не только скорость вращения стрелок наших личных часов строго соответствовала всем остальным часам в стране и во всем мире, но чтобы совпадали и их фазы вращения. Только благодаря тому, что пять миллионов часов, используемых ленинградцами, работают строго согласованно и по скорости и по фазе, сотни тысяч людей одновременно начинают свой рабочий день и координируют все трудовые процессы.


Необходимость согласования ритма при обмене информацией и совместной работе люди интуитивно понимали давно. Это прекрасно отражено в нашей русской «Дубинушке», в нашем национальном «…Подернем! Подернем! Да ухнем!».

Пути снабжения

Люди издавна любили поесть. Когда царь Иван Васильевич (Грозный) решал оттрапезовать со братией, на кухне резали 200 лебедей, 300 павлинов, а сколько пеклось кулебяк, курников, пирогов, никто не подсчитывал. Мозговая ткань – интенсивный потребитель питательных веществ и кислорода. В головном мозгу высокий уровень обмена. Это широко известно, но мало кем по-настоящему осознается. Когда врач у постели тяжелобольного назначает ему покой, полностью исключающий любую физическую и умственную нагрузку, и в том числе чтение, ограничения редко вызывают одобрение. И зря! Вес мозга составляет примерно пятидесятую часть веса тела, но на обеспечение значительной умственной нагрузки тратится около четверти всех энергетических ресурсов организма. Так что иногда ограничения уместны.

Сколько потребляет мозг – известно, как снабжается – неясно. Сравнительно недавно удалось оценить плотность капиллярной сети мозга и выяснить, что его клетки могут получать все необходимое из крови самостоятельно, без помощи посредников. Кровеносные капилляры проходят от тел нервных клеток не далее 25 микрон. К отдельным клеткам они подходят вплотную, сопровождают их отростки, располагаются в специальных бороздках тела клетки, нередко создавая целую капиллярную сеть для отдельного нейрона. Благодаря автоматической регуляции количество протекающей через мозг крови совершенно не зависит от общего артериального давления. Может быть, потребности обмена являются главным регулятором кровоснабжения. Предположение весьма правдоподобное. Действительно, удалось доказать, что, когда функция мозга усиливается, в нем возрастает потребление кислорода и количество протекающей по сосудам крови.

Нейроны снабжаются весьма различно. Существуют районы мозга, где из каждых 10 нервных клеток только 2 непосредственно соприкасаются с кровеносным сосудом, зато в других из тех же 10 уже 8 нейронов контактируют с капиллярами и, наконец, кое-где практически до каждой клетки дотягивается какой-нибудь сосудик. Там, где клеток мало, но сосредоточена большая масса нервных волокон с бесчисленными синапсами, проходят преимущественно венозные капилляры. Видимо, из синапсов необходимо быстро выводить продукты обмена. Мозг в процессе эволюции животных совершенствовался, возрастало количество и плотность расположения его клеток. Одновременно развивающееся кровоснабжение немного опережало увеличение числа нервных клеток. Особенно резки различия между человеком и животными. Значит, кровоснабжение нейронов человека, значительно совершеннее, чем у любого животного. И не только за счет количества капилляров. У человека, например, диаметр капилляров значительно больше, чем у собаки, хотя размер эритроцитов примерно одинаков. Видимо, это вызвано не потребностью расширения пути для крупногабаритных эритроцитов, а необходимостью пропускать их большие количества.

Резко усиливается кровоснабжение сразу же после рождения, особенно в бездействовавших до того районах мозга. Двигательные области, функционировавшие еще до рождения, увеличивают свое кровоснабжение в гораздо меньшем масштабе, чем зрительные, работа которых начинается после рождения. Напротив, прекращение деятельности приводит к уменьшению кровоснабжения. Удаление у щенят глаз, а следовательно вынужденная бездеятельность зрительного комплекса мозга, уменьшало общую длину капилляров в три раза.

Сейчас появилась возможность следить за кровоснабжением отдельных областей мозга животных и даже человека. В кровеносное русло вводится небольшое количество альбумина, меченного радиоактивным йодом, а затем специальные датчики регистрируют количество распадов. Оказалось, что включение света сразу же вызывает приток крови в зрительные области. При сверке чертежей кровоснабжение зрительных областей продолжало увеличиваться. Напротив, решение арифметических задач или участие в философском семинаре улучшает кровоснабжение лобных и сенсомоторных областей мозга. (Они воспринимают информацию мышц и сухожилий о выполняемой работе.)

Часто зоны повышенного кровоснабжения окружает кольцо, где кровоснабжение существенно сокращено. Причина этого неясна. Возможно, работающему отделу не хватает крови, и он грабит соседей, а может быть, соседние нейроны, чтобы не мешать, прекращают всякую деятельность.

Благодаря совершенствованию методики теперь можно следить за изменениями кровоснабжения в очагах мозга площадью всего в 1 квадратный миллиметр. На самом деле кровоток способен произвольно меняться и в более мелких очагах мозга. Существует мнение, что даже отдельные нервные клетки могут усиливать или снижать собственное кровоснабжение.

Достаточно всего трех-шести секунд, чтобы произошло резкое увеличение кровотока. Второй подъем наступает через 10–15 секунд. Видимо, первое повышение кровотока происходит с помощью нервного механизма, а второй подъем объясняется поступлением в сосудистое русло продуктов обмена, непосредственно воздействующих на стенки сосудов, вызывая их расширение.

Очень важно понять кровоснабжение больного мозга. При травмах, закупорке сосудов и других заболеваниях в мозгу возникают участки с резко уменьшенным кровотоком. Они могут быть тесно окружены областями, усиленно снабжаемыми кровью. Сосуды мозга, обедненные кровью, обычно дают парадоксальную реакцию на кислород и углекислый газ. Врачам необходимо об этом постоянно помнить. Если больному для усиления дыхания добавляют в дыхательную смесь углекислый газ, то в ответ сосуды неповрежденных областей мозга (как им и полагается реагировать) расширяются, количество крови в них увеличивается. Частично она сюда поступает от уже обескровленных районов мозга, что резко ухудшает и без того катастрофически малое снабжение кислородом больных участков мозга. Это явление датский нейрохирург Н. Ларсен назвал «синдромом кражи». Противоположный эффект дает увеличение содержания кислорода в крови. В этом случае сосуды здоровых областей мозга сжимаются, часть крови переходит в обескровленные участки и тем улучшает их снабжение кислородом. Это явление получило название «синдрома Робина Гуда» в честь знаменитого разбойника, жившего в Англии 800 лет назад. Как известно, он грабил богатых и раздавал добро бедным.

Нить Ариадны

Зачем собаке пятая нога

Чтобы скрыть позор своей жены Пасифаи, вступившей в противоестественную связь с морским быком, и скрыть от посторонних взоров родившегося в результате этой связи Минотавра – чудовищного человека с головой быка, критский царь Минос приказал искусному строителю Дедалу построить дворец. Критский дворец – Лабиринт оказался величайшим творением Дедала. Он был таким большим, имел столько залов, комнат, лестниц, переходов и закоулков, что попавший туда человек не мог найти дорогу назад.

Раз в девять лет Афины должны были отправлять на съедение Минотавру 7 юношей, не знавших брака, и 7 девушек. Когда за данью прибыли в третий раз и горожане бросили жребий, чьим детям стать жертвой, Тесей, сын афинского царя Эгея, вызвался добровольно отправиться к Миносу. На Крите он проник во дворец и убил Минотавра. Тесей оказался единственным из смертных, кому повезло выбраться живым из Лабиринта.

Бродить бы и по сей день Тесею в Лабиринте, не влюбись в него дочь Миноса Ариадна. Она-то и дала герою моток ниток. Отправляясь на поиски Минотавра, Тесей прикрепил конец нити у входа и разматывал клубок, петляя по переходам дворца. Интересно, что влюбленной царевне не самой пришла в голову эта счастливая мысль. Клубок ниток дал ей Дедал. Даже сам создатель Лабиринта не смог снабдить Тесея планом дворца. Если так сложно оказалось творение рук человеческих, то сколь сложнее должен быть мозг, над которым природа колдовала сотни миллионов лет?

Изучение наследственного аппарата клетки – одно из величайших достижений XX столетия. Биохимики не только сумели расшифровать генетический код, но даже разобрались, как считываются приказы о синтезе отдельных ферментов. Зато пока совершенно неясно, как передаются команды о том, чтобы клетки выстраивались в определенном порядке, формируя органы. Как передается инструкция о том, что голове полагается расти спереди, а хвосту сзади, что конечностей должно быть 4, а пальцев 20. Всего этого мы касаться не будем.

Попробуем разобраться только, как нервные клетки выбирают себе род занятия. Как их отростки умудряются находить именно те области мозга, куда им полагается направлять информацию, и вступают в контакт как раз с теми клетками, которым предстоит обрабатывать полученную информацию. Задача, казалось бы, невыполнимая. Каждому известно, как легко сбиться с пути даже в знакомом лесу, точно зная, куда ты шел. А нервные отростки, блуждая в хаосе нервной ткани, должны не только найти дорогу, но и определить цель своих исканий.

Все родственные животные имеют сходное строение тела, в том числе мозга. Хорошо ли они сконструированы? Вопрос трудный, но не безнадежный. Например, нужна ли собаке пятая нога и как она будет использоваться, коли пес обзаведется подобным вспомогательным средством передвижения. Сейчас на этот вопрос может быть дан ответ с достаточно высокой степенью вероятности.

В последнее десятилетие эксперименты с пятой конечностью весьма популярны. Очень трудно проследить, как в процессе развития эмбриона находят друг друга внутри мозга отростки двух определенных нейронов, нередко расположенных весьма далеко друг от друга. Как пробирается нервное волокно на периферию, разыскивая орган, который предстоит подчинить. Проще это выяснить в эксперименте, если животному хирургическим путем пересадить дополнительный орган. Так можно убить сразу двух зайцев: узнать, как организм иннервирует орган-пришелец и какую функцию тот будет выполнять на новом месте.

У рыб и амфибий хирургические реконструкции идут удивительно просто, особенно в раннем детстве. Тритону можно пересадить дополнительную, пятую конечность, второй хвост, третий глаз, еще одно сердце. У таких химер пересаженные органы продолжают функционировать и на новом месте, сначала в соответствии с химическими приказами хозяина (приносимыми кровью), когда в них проникнут нервы, будут выполняться и их команды.


Пятая конечность, если ее пересадить вблизи соответствующей лапы хозяина, движется одновременно с ней. Правда, сила и амплитуда сокращений ее мышц чуть ниже, чем остальных лап. Она запаздывает на несколько сотых долей секунды, и не все 40 мышц приживленной конечности работают достаточно энергично. Мы можем спокойно пренебречь этими мелочами. Покадренно сравнивая движение одноименных конечностей, снятых на кинопленку, не удается обнаружить никакой разницы. Восьмилапая химера тигровой саламандры, у которой была дублирована каждая из четырех конечностей, работала каждой парой как одной лапой, плавало ли животное в воде или двигалось по суше.

Не ищите в этом явлении скрытой целесообразности. Нетрудно убедиться, что ее нет, стоит лишь подшить к любой из четырех конечностей лапу, взятую с противоположной стороны тела. Впервые такую операцию сделали по ошибке, и ее результаты немало удивили экспериментаторов. Левая передняя конечность одного тритона была пересажена рядом с правой передней конечностью другого. На этом месте она выглядела достаточно нелепо. Во-первых, локтями и кистями лапы были направлены в разные стороны. Во-вторых, ладонь пересаженной лапы оказалась вывернута наружу.

У таких восьмилапых тритонов мышцы каждой пары конечностей работали синхронно, сгибая одни и те же суставы, но создаваемая ими движущая сила была направлена в противоположные стороны. Сколько урод ни барахтался, он не мог сдвинуться с мертвой точки. Если же собственные конечности удалить, парадоксальная деятельность пересаженных лап заставит саламандру пятиться назад. Вот вам и целесообразность! Значит, не в ней дело.


    Ваша оценка произведения:

Популярные книги за неделю