355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Воронцов-Вельяминов » Строение вселенной » Текст книги (страница 3)
Строение вселенной
  • Текст добавлен: 5 апреля 2017, 15:00

Текст книги "Строение вселенной"


Автор книги: Борис Воронцов-Вельяминов



сообщить о нарушении

Текущая страница: 3 (всего у книги 5 страниц)

Когда Галилей открыл движущихся спутников Юпитера – как бы новые планеты в солнечной системе, церковники отрицали его открытие, ссылаясь на то, что-де у человека на лице семь отверстий, а потому и планет бог создал семь, а больше быть не может.

Две луны Марса, имена которых (Деймос и Фобос) в переводе с греческого означают «страх» и «ужас», не стоят одной нашей, так они малы и так мало дают света. Деймос имеет в диаметре всего 20 километров, а Фобос – только 8 километров.

ГЕРМЕС И ДРУГИЕ ПЛАНЕТЫ-КРОШКИ

Между Марсом и Юпитером находится широкий пояс, или кольцо, малых планет, называемых также астероидами. Более полутора тысяч их открыто учеными за последние полтораста лет. Много их открыто в советской обсерватории в Крыму, и одна из этих планет носит название Владилена – в честь Владимира Ильича Ленина. Целым роем несутся планетки вокруг Солнца, и самая большая имеет всего лишь 800 километров в поперечнике. Остальные планетки тем меньше, чем они многочисленнее.

Легко представить себе удивление ученых, когда в 1898 году был открыт астероид, названный Эросом. Эрос движется вокруг Солнца по очень вытянутому пути. В среднем он находится всегда в два-три раза дальше от Солнца, чем Земля, и движется за орбитой Марса. Однако, приближаясь к Солнцу, он пересекает орбиту Марса и может приблизиться к Земле вдвое ближе, чем Марс, который с этих пор утратил название планеты, самой близкой к Земле. Так близко к Земле Эрос подходит только один раз в тридцать лет.

Диаметр Эроса составляет всего лишь около 25 километров. И даже при наибольшем сближении с Землей он светится как звездочка, видимая лишь в сильный бинокль. В 1900 году за семьдесят девять минут его блеск ослабел на глазах пораженных наблюдателей, следивших за ним четыре часа. В течение последующих часов он опять разгорелся до прежнего блеска и снова стал тухнуть. Обнаружилось, что колебания его блеска повторяются и через каждые 5 часов 15 минут он дважды достигает большой яркости и дважды ослабевает. Едва успели к этому присмотреться, как колебания блеска Эроса стали затихать и скоро совершенно исчезли.

В следующем своем сближении с Землей Эрос то не менял яркости, то менял ее едва заметно, а иногда так же сильно, как и в первый раз. Тайна вокруг Эроса сгущалась и заставила ломать голову над загадочным поведением нашего кратковременного небесного соседа.

Орбиты некоторых астероидов продолговаты, подобно орбитам короткопериодических комет.

В конце концов выяснилось, что Эрос имеет форму огурца или высокого и узкого бочонка, к тому же покрытого темными и светлыми пятнами. Взаимные положения Земли и Эроса меняются. Эрос вращается вокруг своей оси и поворачивается к нам то «дном бочонка», то его «боками». В зависимости от изменения величины видимой нами поверхности этой уродливой планетки, обращенной к нам, ее яркость и меняется.

Тридцать пять лет прошло, прежде чем был открыт другой астероид, также пересекающий орбиту Марса и приближающийся к Земле на небольшое расстояние. Незадолго перед Великой Отечественной войной было открыто около полудюжины таких же мелких планет, пересекающих орбиту Марса. Среди них интереснее всего для нас астероид Гермес. Гермес движется вокруг Солнца по очень вытянутому пути и подходит к Солнцу ближе, чем Венера. Другими словами, эта планета-крошка на своем пути пересекает не только орбиту Марса, но и орбиты Земли и Венеры.

Гермес проскочил в 1937 году мимо нас на расстоянии всего лишь в 1 миллион километров, то-есть всего лишь втрое дальше, чем расстояние от Земли до Луны. В астрономическом смысле до него в это время было «рукой подать». Иногда Гермес может подойти к Земле и вдвое ближе.

Открыть планетку такого типа, как Гермес, который является ближайшим нашим небесным соседом, хотя и не надолго, очень трудно. Во-первых, она может быть видна лишь короткое время, пока проходит вблизи Земли и потому достаточна ярка. Удаляясь от нас, она быстро ослабевает в блеске и теряется в глубине пространства. Во-вторых, вследствие перспективы в это время такая планетка очень быстро несется на фоне звезд. За час она пролетает на небе тот путь, который Луна успевает сделать за двадцать часов.

Уже не за горами то время, когда ракеты, придуманные для межпланетных сообщений, выйдут из стадии опытов и полетят в межпланетное пространство. Путешествие на ближайшую планету – Венеру или Марс – будет во много раз дольше и сложнее, чем путешествие на Луну. Так нельзя ли будет воспользоваться Гермесом и «прыгнуть» на него, когда он будет проходить мимо нас? Не затрачивая горючего, мы могли бы нестись вместе с ним дальше по солнечной системе и, вернувшись, «спрыгнуть» обратно на Землю, когда Гермес снова близко подойдет к ней. Путешествуя на Гермесе, мы могли бы рассматривать с него другие планеты и земной шар в самых различных видах. Мы могли бы видеть с него Землю в виде серпа или полукруга, когда Гермес находился бы от Солнца дальше, чем Земля.

Земной астроном, путешествуя на Гермесе, быть может разоблачил бы какие-нибудь тайны Венеры – этой прекрасной планеты, вечно прячущейся под покровом сплошных облаков.

Астероид Гермес по сравнению с территорией Центрального парка культуры и отдыха имени Горького в Москве.

Гермес приблизил бы нас и к Меркурию на расстояние втрое меньшее, чем то, которое отделяет его от Венеры. Мы пронеслись бы с ним на кратчайшем расстоянии от Марса и открыли бы на последнем такие интересные подробности, которых сейчас не можем даже и вообразить. Наконец вместе с Гермесом мы погрузились бы в область, занятую астероидами, догоняя одни из них и будучи догоняемы другими. Тысячи их, вплоть до самых мелких, еще неизвестных на Земле, проносились бы мимо нас, и иные, проходя очень близко, сверкали бы на время ярче всех остальных больших планет.

Небо Гермеса, когда он пробегал бы свой путь вдали от Солнца, было бы заполнено мириадами блуждающих светил – планет, из которых только пять доступны невооруженному глазу и издревле известны на Земле…

Много чудесного увидел бы ученый, путешествующий несколько лет на Гермесе. Много загадок разрешили бы его наблюдения, но, к сожалению, полет на Гермес вряд ли явится удобным.

Следует вспомнить, что на астероидах и на Гермесе нет никакой атмосферы и дышать нам было бы там буквально нечем. Быть может, не меньше неожиданностей и забот принесла бы нам ничтожная сила тяжести на этой планете – крошке, имеющей диаметр всего лишь около 1 километра. Сила тяжести была бы там примерно в десять тысяч раз меньше, чем на Земле, то-есть ее почти не было бы.

Неосторожное движение рукой – и мы от этого подскакивали бы высоко над планетой, медленно опускаясь на нее обратно. С высоты в 1 метр мы падали бы на планетку в течение сорока двух секунд. Падая с такой высоты, мы бы успели за это время выпить стакан молока и закусить. Впрочем… это еще большой вопрос, удалось ли бы его выпить. При такой малой силе тяжести жидкость лениво выливается из посуды, стремясь собраться в шар под действием тяготения своих частиц. Пить жидкость в таком виде было бы затруднительно. При ударе от этого шара откалывались бы капли и дробились бы, как ртуть.

Вздумайте приставить губы к капле молока объемом в стакан или в воздушный шар, чтобы втянуть в себя эту жидкость, – при первом же прикосновении губ жидкость разольется по вашему лицу, обволакивая нос, глаза и все тело. Впрочем, пить на Гермесе можно было бы через трубку или соломинку. Не следует опасаться, что каждый кусок хлеба, откушенный на Гермесе, будет полминуты падать в желудок. Жидкость и пища попадают в желудок не под действием тяжести, а благодаря спазмам пищевода. Пищевод проталкивает пищу в желудок даже против силы тяжести. Если бы жидкость попадала в желудок исключительно благодаря тяжести, то несчастные жирафы никогда не могли бы напиться или же после каждого глотка им приходилось бы задирать голову кверху.

Но на Гермесе не так надо опасаться затруднений с питанием, как излишней живости… Не вздумайте подпрыгнуть там от восторга: небольшой прыжок вверх – и вы навсегда удалитесь от Гермеса в безвоздушное пространство. Дело в том, что скорость, которую ваши мускулы могут сообщить телу, чтобы на мгновение отделить его от земли, на Гермесе уже достаточна, чтобы преодолеть притяжение к астероиду. В этом смысле и ходить даже по Гермесу небезопасно. Если он еще вращается вокруг своей оси, развивая центробежную силу, которая ослабляет вес тела на нем, то, чтобы не унестись с Гермеса живым на небо, надо будет ходить по нему на руках, то-есть, вернее, цепляться руками за его, вероятно, неровную, угловатую поверхность. Если все это вас рассердит, то не злитесь и не бросайте с досады какой-нибудь предмет на каверзную планетку: по закону, действие равно противодействию, – это усилие сообщит вам обратный толчок и опять неожиданно столкнет вас с места.

Малая тяжесть, а отсюда и малый вес вашего тела позволит вам безболезненно спать на острых каменных выступах поверхности Гермеса. Вы могли бы там спать даже на остриях гвоздей, вбитых в доску, подкладывая под голову грабли.

Как мы могли бы приспособиться на Гермесе ко всем необычным условиям – сказать трудно, но все же такое приспособление не безнадежно.

МЕЖПЛАНЕТНЫЕ ПУТЕШЕСТВИЯ

Нас удерживает на Земле земное тяготение. Можно ли бросить камень так, чтобы он никогда не упал на землю? Никому это еще не удавалось, и даже снаряд из самой дальнобойной зенитной пушки, летя вверх, замедляет свое движение и рано или поздно падает обратно на землю. Его тянет вниз земное тяготение. Но с чем большей скоростью мы бросаем камень или выпускаем снаряд из пушки, тем больше он способен преодолевать земное тяготение и тем дальше от Земли он может удалиться.

Наука механика позволяет рассчитать, какова должна быть скорость брошенного тела, чтобы оно при данной силе притяжения планеты покинуло ее навсегда и удалилось в мировое пространство.

Вычислено, что если бы мы на вершине горы установили горизонтально пушку и выстрелили из нее снарядом, который вылетел бы из дула со скоростью 8 километров в секунду, то он бы уже никогда не упал на Землю, а кружился бы около нее параллельно ее поверхности. За восемь часов он успевал бы облететь кругом Земли. При большей скорости снаряд описывал бы вокруг Земли не окружность, а вытянутую кривую, называемую эллипсом, а при скорости 11 километров в секунду уже навсегда улетел бы от Земли по кривой линии.

Но как же сообщить снаряду такую огромную скорость, если из самых дальнобойных орудий, существующих сейчас, снаряды вылетают со скоростью не более 1,5 километра в секунду?

Очевидно, для этой цели надо было бы соорудить чудовищно большую пушку и огромнейший заряд, который бы выбрасывал снаряд. Но нас интересует не обстрел Луны, а путешествие на нее, а для этого надо внутрь снаряда поместить людей; эти люди должны уцелеть при выстреле и вернуться с Луны обратно.

В настоящее время найден уже способ, с помощью которого можно отправиться в путешествие на Луну и даже благополучно вернуться оттуда обратно.

Проект ракеты К. Э. Циолковского для межпланетных путешествий.

Такой способ был предложен нашим замечательным ученым-самоучкой – Константином Эдуардовичем Циолковским. Циолковский доказал, что для этой цели можно применить межпланетную летательную машину, устроенную наподобие ракеты.

Ракета – это трубка, набитая порохом. Порох загорается не сразу, а горит постепенно, и пороховые газы выходят через открытый нижний конец трубки. Ракета может лететь в пустом пространстве, и даже лучше, чем в воздухе, потому что движется вследствие отдачи. Давление газа вниз не встречает большого сопротивления, газы устремляются наружу, а давление пороховых газов вверх давит на верхнюю часть ракеты, ее головку, и увлекает ракету вверх. Так в дни торжеств взлетают над Москвой праздничные ракеты, начиненные в головной части шариками бенгальского огня. Когда порох догорит до этого места, шарики зажигаются, и бенгальские огни разноцветными звездами рассыпаются в темном небе. Ракеты применяют для сигнализации в военном деле, для освещения неприятельских позиций и для бросания канатного кольца с берега кораблю, если это нельзя сделать с помощью руки.

В передней части ракетного корабля должна быть устроена каюта для пассажиров, задняя часть должна содержать запасы горючего. В качестве такого горючего невыгодно применять порох: во-первых, он может неожиданно взорваться и, во-вторых, сравнительно со своим весом он обладает не такой уж большой движущей силой.

Выгоднее применять жидкие горючие вещества, которые взрываются лишь при соединении, например гремучий газ, образующийся из смеси газов кислорода и водорода, которые можно, охладив, превратить в жидкость. Ракета безопаснее для путешественников в том отношении, что у нее скорость нарастает постепенно, ракета может разгоняться, тогда как в пушечном снаряде скорость возрастает почти мгновенно до чудовищной величины. Кроме того, при достаточном запасе горючего его хватит и на обратное возвращение на Землю.

Перелет на Луну и обратно в ракете займет менее двух недель, то-есть меньше, чем кругосветное путешествие, и вполне осуществим. Путешествие на другие планеты займет, конечно, гораздо больше времени. При этом, кроме запасов питья и еды, надо взять с собой особые костюмы вроде водолазных, внутри которых будет циркулировать воздух для дыхания, если мы попадем на небесное тело, лишенное атмосферы. Внутри костюма можно устроить искусственное электрическое подогревание, если в межпланетном путешествии станет слишком холодно.

Во время Великой Отечественной войны фашисты использовали гениальную идею нашего Циолковского о ракетном двигателе для уничтожения мирного населения разных городов и стран.

Мы видим, что капиталистический мир с его противоречиями всякое достижение человеческой мысли пытается использовать для уничтожения человечества. Мирное развитие ракетного движения и применение его для полезных целей и, в частности, для посещения других миров возможно только в условиях социалистического общества, где атомная энергия пойдет на пользу человеку.

НЕБЕСНЫЕ ГОСТИ – КОМЕТЫ

Необычные небесные гости косматого вида, называемые кометами, редко рассматривались как счастливое предзнаменование. Большей частью религиозная пропаганда объявляла их предвестниками ужаса и всяких несчастий. Появлению комет приписывалось возникновение войн и эпидемий. Под влиянием таких суеверных страхов один современник зарисовал в старинной книге комету и то, что он в ней от страха увидел. Ему мерещились в комете десятки отрубленных голов с окровавленными бородами, кинжалы и сабли. В наше время ученые, чуждые суеверных страхов, наблюдая кометы, не видят в них никаких отрубленных голов, а изучают физическое строение комет и фотографируют их.

Что видели в комете 1527 года суеверные наблюдатели.

Уже давно было доказано, что все небесные тела притягиваются друг к другу и что планеты обращаются вокруг Солнца под действием взаимного тяготения. Почти три века назад доказали, что и кометы движутся в мировом пространстве по определенному пути, огибая Солнце и повинуясь его тяготению. Их путь в мировом пространстве можно точно определить, наблюдая видимое положение комет среди звезд, по отношению к которым они медленно перемещаются день ото дня.

Орбита кометы Галлея. На рисунке отмечено положение кометы в соответствующие годы.

Наблюдая одну из ярких комет, еще в конце XVII века точно вычислили путь, по которому она двигалась вокруг Солнца. Такие же расчеты проделали для комет, наблюдения над которыми были записаны в старинных книгах. Сравнивая пути в мировом пространстве, описанные разными кометами, заметили, что одна комета, наблюдавшаяся семьдесят пять лет назад, и другая, наблюдавшаяся сто пятьдесят лет назад, двигались по одному и тому же пути. Так пришли к заключению, что это одна и та же комета, периодически приближающаяся к Земле и Солнцу и становящаяся невидимой, когда она по своему пути, то-есть по своей орбите, уходит от них далеко. Очевидно, путь этой кометы очень вытянутый, и полный оборот по нему комета совершает за семьдесят пять лет. Учеными было предсказано, что эта комета, названная впоследствии кометой Галлея, снова приблизится к Земле и к Солнцу через семьдесят пять лет, в 1758 году.

Это открытие блестяще подтвердилось, и комета действительно вернулась в назначенный год. Ее появление ожидалось уже задолго и ни для кого не явилось неожиданностью. Стало ясно, что кометы не могут предвещать никаких несчастий, что они являются небесными телами, которые, подобно планетам, повинуются определенным законам природы, что ничего чудесного и сверхъестественного в их появлении нет.

В XVIII веке теория движения небесных тел была уже настолько развита, что ученые указали даже месяц, когда комета Галлея пройдет на кратчайшем расстоянии от Солнца. В своем предсказании они ошиблись всего лишь на три недели.

При последнем своем появлении, в 1910 году, комета Галлея приблизилась к Солнцу всего лишь на три дня позднее, чем ожидали. Так развитие науки позволяет заранее рассчитывать движение комет и определять их видимое место на небе все точнее и точнее. Несомненно, что в 1985 году, когда комета Галлея появится снова, она будет в назначенном учеными месте в точно определенный час.

Позднее ученые открыли еще много комет, периодически возвращающихся к Земле и к Солнцу и удаляющихся от них на некоторое время очень далеко. На большом расстоянии от Солнца кометы светятся очень слабо, но они продолжают свой путь, и мы, хотя и не видим их, всегда можем сказать, в какой части солнечной системы они сейчас находятся.

Известно уже более полусотни комет с периодом обращения меньше ста лет. Быстрее всего вокруг Солнца и по наиболее короткому пути обращается комета Энке-Баклунда. Каждые три с половиной года она приближается к Солнцу. До настоящего времени наблюдалось уже более сорока ее возвращений. Кстати сказать, целый ряд возвращений кометы Галлея в далеком прошлом можно было установить по записям в старинных русских, китайских и других летописях. Например, появление кометы в 1066 году было описано в русских и грузинских летописях.

Некоторые ученые специально посвятили себя поискам новых комет. Целые вечера просиживали они за телескопом, обшаривая небо. Иногда их терпеливый труд долго не вознаграждался, но бывало, что одному из астрономов удавалось за один вечер открыть сразу две кометы. Комета получала имя того, кто ее открыл. Много комет открыли русские ученые.

Каждый год открывают по нескольку комет, иногда более десятка.

Как выглядят кометы?

На такой вопрос нельзя ответить коротко. Кометы – это небесные хамелеоны, и вид их различен. Но даже одна и та же комета меняет свой вид в зависимости от того, на каком расстоянии от Солнца она находится.

Вдалеке от Солнца комета видна как маленький светлый туманный кружочек, более яркий в середине и размытый по краям. Подобные светлые туманные пятна в большом числе видны на небе и называются туманностями. Они находятся всегда в одних и тех же местах неба среди звезд и занесены в списки; положение каждой из них на небе и ее вид хорошо известны ученым. Кометы же отличаются от туманностей по их перемещению среди звезд. Довольно медленно комета перемещается среди звезд и каждый день видна уже на новом месте неба.

Когда комета приближается к Солнцу, то туманное пятнышко, каким она представляется, вытягивается по направлению к Солнцу, а яркость ее становится все больше и больше. Большинство комет, открываемых в настоящее время, остаются такими в течение всего времени их оборота вокруг Солнца. Тогда они наблюдаются только в телескоп и невооруженным глазом невидимы. Это так называемые телескопические кометы. Но бывают и более яркие кометы, у которых с приближением к Солнцу из туманного пятнышка протягивается в сторону, противоположную Солнцу, светлый луч, называемый хвостом кометы. Иногда он бывает совершенно прямой, а иногда изогнутый. Эта изогнутая форма хвоста некоторых комет давала раньше повод суеверным людям сравнивать кометный хвост с изогнутой саблей и заставляла их видеть в комете что-то ужасное.

Яркая комета, появившаяся в 1858 году.

Хвост кометы всегда направлен прочь от Солнца, как будто Солнце упрямо отталкивает кометный хвост. В самом деле это так. Солнце притягивает к себе ядро кометы (самую плотную, среднюю ее часть) и заставляет ее обращаться вокруг себя, но хвост кометы оно, наоборот, отталкивает. Ядро кометы видно как слабо мерцающая звездочка в середине головы. В телескоп и на фотографии можно видеть, как из ядра кометы по направлению к Солнцу выбрасываются струйки светящегося вещества, как они загибаются потом назад и, сливаясь позади кометы, образуют ее хвост. Явления, происходящие в кометах, подробнее всего были изучены замечательным русским астрономом Ф. А. Бредихиным и его последователем – лауреатом Сталинской премии С. В. Орловым.

Знаменитый русский ученый П. Н. Лебедев доказал, что хвосты комет направляются прочь от Солнца, потому что они состоят из очень мелких частиц. Такие мелкие частицы, совершенно невидимые глазом, как и всякие другие, притягиваются к Солнцу, но в то же время на них действует давление света.

Давление света действует, как и притяжение, на все тела, но для маленьких частиц давление солнечного света больше, чем их притяжение к Солнцу. Потому такие частицы, выделившиеся из ядра кометы, в конечном счете Солнцем отталкиваются. Давление света действует на поверхность частиц, оно зависит от ее размера, а притяжение зависит от веса частиц. У маленьких частиц при их малом весе поверхность сравнительно велика. Чтобы яснее себе это представить, сравним то, о чем мы сейчас говорили, с падением разных предметов на землю. Когда предмет падает вследствие притяжения его землей, то его движение тормозит сопротивление воздуха, которое тем больше, чем больше поверхность тела. Поэтому самый маленький гвоздик падает на землю гораздо быстрее, чем большая пушинка, имеющая большую поверхность. Точно так же человек с парашютом весит немного больше, чем без парашюта, но с открытым парашютом он опускается на землю медленно, потому что сопротивление воздуха для большой поверхности парашюта очень велико. Так световое давление по сравнению с тяготением для маленьких частиц кометного хвоста гораздо больше, чем для ядра кометы.

Ф. А. Бредихин.

Хорошо известно, что голова и хвост кометы состоят из очень разреженных газов, которые выделяются из кометного ядра при его нагревании Солнцем. Чем ближе к Солнцу ядро кометы, тем сильнее оно нагревается и тем больше газов из него выходит. Когда этого газа выделяется достаточно много, то образуется заметный хвост.

В больших и ярких кометах, кроме газа, в голове и хвосте находится еще много мельчайшей пыли, которая образуется от столкновения твердого кометного ядра с небольшими камешками, носящимися в мировом пространстве. Такие камешки, ударяясь о твердое кометное ядро, частично разрушают его и создают много мелкой пыли, которая подхватывается солнечными лучами и уносится в хвост кометы.

Вещество, заключенное в кометном ядре, постоянно уносится в хвост и рассеивается оттуда в мировое пространство. Хвост, тянущийся за кометой на расстояние иногда столь же громадное, как расстояние от Земли до Солнца, несколько похож на струю дыма, тянущегося за бегущим паровозом. И этот дым образуется за счет все нового и нового выбрасывания частиц, рассеивающихся в пространстве.

Но из каких же газов состоит хвост кометы?

Это окись углерода, или угарный газ, какой образуется в комнате, если мы закроем печку раньше, чем прогорело топливо. Голова кометы состоит из паров углерода и газа, который называется циан.

Суеверные люди всего боятся.

Когда они узнали, что кометы не могут быть причиной войн или болезней и что с этой стороны комет бояться нечего, они стали бояться столкновения Земли с кометой. Они думают, что комета в своем беге вокруг Солнца может наскочить на земной шар и разбить его вдребезги. Служители церкви охотно поддерживают такие страхи.

Действительно, комет в мировом пространстве очень много. По выражению одного ученого, комет в мировом пространстве столько же, сколько рыб в океане. Кроме полусотни комет с коротким периодом обращения вокруг Солнца, нам известны сотни комет с такими длинными периодами обращения, что до сих пор наблюдалось лишь по одному появлению таких комет. Однако размеры небесных тел так малы по сравнению с расстоянием между ними, что столкновение Земли с кометой может происходить чрезвычайно редко. И представьте себе, что такие случаи уже были.

Например, в 1910 году 19 мая Земля прошла через хвост кометы Галлея, а многие этого и не подозревали. Некоторые люди страшно боялись предстоящего столкновения Земли с хвостом кометы Галлея и ожидали, что наступит конец света. В царской России на улицах и в церквах служили молебны для отвращения ожидаемых ужасов.

Земля погрузилась в хвост кометы Галлея, пробыла в нем несколько часов и вышла из него как ни в чем не бывало. Даже ничтожной примеси кометных газов в воздухе не было обнаружено, потому что газы, из которых состоит комета, чрезвычайно разрежены.

19 мая 1910 года хвост кометы Галлея коснулся Земли.

С каждым своим возвращением к Солнцу комета светится слабее – это показал киевский ученый С. К. Всехсвятский.

Но что будет, если Земля столкнется с ядром кометы, которое, по – видимому, твердое?

Наблюдалось не раз, что кометные ядра легко разрушаются. Например, в прошлом столетии комета Белого на глазах у наблюдателей распалась на две части. Из нее получились две кометы, бежавшие друг за другом вокруг Солнца. Через шесть лет обе кометы снова вернулись к Солнцу, но уже светящимися. С тех пор они пропали. В 1877 году, в ноябре, Земля должна была столкнуться с ядром исчезнувшей кометы Белого. В эту ночь наблюдался дождь падающих звезд. Падающие звезды – это мелкие камешки, влетающие из мирового пространства в земную атмосферу и испаряющиеся в ней, не долетев до Земли. Они испаряются благодаря сопротивлению воздуха, который тормозит их движение и нагревает их, так что они превращаются в пар. Мелкие камешки, часть которых, столкнувшись с Землей, произвела явление падающих звезд, – вот все, что осталось от кометы Белого. Ядра других комет тоже представляют собой небольшую кучку мелких камней, столкновение которых с Землей не страшно.

Падающие звезды, наблюдаемые нами, – это осколки распавшихся комет. Каким образом происходит этот распад ко – метных ядер, недавно выяснил казанский астроном А. Д. Дубяго. Проведенное автором этой книжки изучение кометных ядер показало, что кучка камней, из которых состояло ядро большой и яркой кометы Галлея, если их собрать вместе, составляет всего лишь 60 километров в поперечнике. Это гораздо меньше размеров земного шара. И так как это ядро – не один большой кусок, а множество очень мелких, то его столкновение с Землей совсем не страшно, но даже и это столкновение очень мало вероятно.

Видим мы комету иногда большой, яркой и даже страшной на вид, но вещества-то в ней почти никакого и нет.

Это «видимое ничто» – вот как можно назвать кометы.

КАМНИ, ПАДАЮЩИЕ С НЕБА

В 1790 году одно из заседаний Парижской Академии наук было очень веселым, и ученые, присутствовавшие на этом заседании, долго смеялись. Еще бы, городское управление города Жульяк прислало в академию протокол, будто бы в девять часов вечера 24 июля к ним с неба упал большой камень! Добро бы один мэр, повидимому сумасшедший, подписал такую нелепость, но под протоколом подписалось еще триста наивных гасконцев, жителей города.

Ну, да, впрочем, кто во Франции не знает, что гасконцы известны как прирожденные болтуны и хвастуны, можно ли им верить, – так решили французские академики.

Академия постановила выразить сожаление, что население в Жульяке так суеверно и имеет такого глупого мэра. Довольно распространять нелепые басни о падении камней с неба. Слишком уж много и без того ходит по свету подобных небылиц.

Железно-каменный метеорит, найденный в Сибири петербургским академиком Палласом в 1772 году.

Но то, что французским ученым показалось тогда нелепой выдумкой, в России уже было признано за научный факт. В 1772 году петербургский академик Паллас, исследуя Сибирь, нашел в Красноярске удивительный кусок, в котором камень и железо переплетались в причудливых сочетаниях. Местные казаки нашли его на лесистой сопке недалеко от города. В тот же год сотрудник Петербургской Академии наук Хладный, узнав об этой находке, смело выступил с доказательствами возможности падения камней с неба. Он доказывал, что такие камни действительно падают и могут приходить к нам только из мирового пространства. Но Хладному верили неохотно, и лишь последовавшие вскоре падения камней в Англии, Германии и Франции заставили наконец ученых признать, что бывают действительно камни, которые падают с неба. Справедливости ради надо сказать, что недоверие ученых было вполне понятным. Несмотря на то что на землю каждый год падает множество «небесных» камней, большинство из них падает в океаны, в снежные просторы Заполярья, в тайгу, то-есть в места, удаленные от людского жилья, и ученые их почти не видят.

Много описаний падения камней встречается в старинных летописях. На одном из них, упавшем в ноябре 1492 года на верхнем Рейне, современники сделали надпись: «Об этом камне многие знают много, каждый что-нибудь, но никто не знает достаточно». А чтобы небесный дар не улетел обратно на небо, население приковало его цепями к церковной паперти.

Камни, падающие с неба, называют метеоритами. Известны случаи, когда на землю выпадал целый каменный дождь – дождь метеоритов. В 1803 году возле города Эгль во Франции выпало три тысячи камней, а в Пултуске, в Польше, в январе 1868 года выпало сто тысяч кусков.

Метеориты бывают трех видов: одни состоят почти из чистого железа; другие – из камня, так похожего на земные камни, что отличить их может только специалист; третий вид метеоритов представляет смесь камня и железа. Представьте себе железную губку, в которой все пустоты заполнены каменистой массой, – это и будут каменно-железные метеориты вроде метеорита, найденного Палласом в Сибири.

Большие куски железа, если их найти в поле или в лесу, представляют столь неожиданную находку, что она всегда обращает внимание.

Таким образом, в музеи было доставлено большое число железных метеоритов, падение которых никем не наблюдалось и которые упали, быть может, несколькими веками раньше, чем их подобрали.


    Ваша оценка произведения:

Популярные книги за неделю