355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Билл Фрэнкс » Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики » Текст книги (страница 11)
Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
  • Текст добавлен: 28 сентября 2016, 22:56

Текст книги "Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики"


Автор книги: Билл Фрэнкс



сообщить о нарушении

Текущая страница: 11 (всего у книги 29 страниц) [доступный отрывок для чтения: 11 страниц]

Использование данных о соответствии условиям для увеличения продаж

Производители фасованных потребительских товаров ежегодно тратят огромные суммы денег на рекламу, промоакции и специальные выкладки товаров в магазине. Производители, с учетом высокой стоимости таких выкладок, хотят убедиться в том, что они размещаются в обговоренном месте и на протяжении обговоренного срока. Установка датчиков позволяет производителям контролировать местоположение выкладок без необходимости направлять в магазины своих сотрудников для визуальной проверки. Это дает возможность экономить много денег, а производители будут точно определять, когда была сделана выкладка их товара и как долго она находилась в этом месте.

Сопоставляя данные о местоположении с данными о продажах можно составить более ясное представление об эффективности промоакции. Например, некое место в торговом зале может казаться отличным для привлечения покупателей, а выяснится, что на самом деле это не так. Или же окажется, что выкладка была размещена в непривлекательном месте либо ее убрали на день раньше срока. Аналитика, оценивающая эффективность промоакции, способна принять вышеназванные обстоятельства во внимание. Соответственно при планировании следующих промоакций производитель будет договариваться о выделении лучшего места для выкладки и об оплате с учетом уточненных показателей продаж, привязанных ко времени и месту. Несмотря на то что изначально эти данные собираются с целью контроля за соблюдением условий, они могут использоваться для того, чтобы внести поправки в стратегии продвижения товара.

Создавайте и стратегическую аналитику

Итак, мы обсудили широкий спектр примеров тактического применения операционной аналитики. Однако собранные данные могут быть разнообразно использованы и в стратегической долгосрочной аналитике. Например, многие организации сегодня используют сенсорные данные и аналитику для того, чтобы выявлять возникающие со временем закономерности отказов оборудования. Это особенно характерно для производителей автомобилей, авиационных двигателей и тяжелой техники, такой как тракторы и самосвалы.

Собираемые данные используются для предупредительного техобслуживания – практического применения аналитики с целью опережающего выявления и устранения проблем, прежде чем те приведут к серьезным неполадкам. Мы уже вкратце касались этой темы в первой и второй главах, а теперь давайте рассмотрим ее подробнее, чтобы понять, как одни и те же данные можно использовать и в операционных, и в стратегических целях.

Чтобы проиллюстрировать потенциал подобного подхода, обратимся к такой дорогостоящей технике, как самолет. Сотрудник одной авиакомпании как-то по секрету сообщил мне, что снять крупный коммерческий самолет с рейсов и демонтировать с него двигатель для ремонта обойдется владельцам, по скромным оценкам, в сумму порядка $1 млн. Эта сумма складывается из потерянных доходов за время простоя самолета и стоимости рабочего времени, необходимого для демонтажа и повторного монтажа двигателя. Понятно, что авиакомпании (или военно-воздушные силы) прибегают к такому дорогостоящему ремонту только при крайней необходимости. К счастью, аналитика и данные позволяют радикально изменить подходы к техобслуживанию как на краткосрочном операционном, так и на долгосрочном стратегическом уровне.

Традиционно в случае отказа двигателя механики его осматривали, выясняли, какие симптомы наблюдались непосредственно перед поломкой, и пытались установить, что именно требует ремонта.

Сегодня же производители могут использовать датчики, которые в мельчайших подробностях отслеживают, как двигатель работает по прошествии времени. А когда возникают проблемы, данные анализируются с целью выявить ранние предупреждающие индикаторы. Например, может быть установлено, что поломке конкретного узла двигателя предшествовало усиление трения определенного компонента вместе с небольшим повышением температуры в течение нескольких дней или недель. После чего аналитика будет искать похожую комбинацию в других двигателях и, если обнаружит, подаст предупреждающий сигнал о необходимости проведения профилактического ремонта. Такова суть предупредительного техобслуживания.

Тем самым обеспечиваются два важных стратегических преимущества. Это позволяет производителям, во-первых, лучше понять динамику работы оборудования в реальных условиях и внести необходимые технические изменения, чтобы усовершенствовать оборудование в будущем. Во-вторых, заранее предупреждать серьезные поломки. В идеале такие процессы должны происходить в рамках планового техобслуживания, чтобы свести к минимуму издержки. Техобслуживание к тому же дешевле ремонта.

Обратите внимание, что здесь, помимо операционной аналитики, возникают возможности и для операционного применения традиционной аналитики. Операционная аналитика следит за работой двигателя в режиме реального времени и носит тактический характер. Стратегический компонент вступает в действие при корректировке долгосрочных планов техобслуживания на основе анализа сенсорных данных. Аналитика может быть применена для уточнения рекомендуемых графиков проведения техобслуживания с учетом работы двигателей в прошлом – таково стратегическое операционное применение традиционной аналитики. Данные об истории эксплуатации большого количества двигателей анализируются в пакетном режиме с целью выработать обновленные правила техобслуживания.

Предупредительное техобслуживание на основе аналитики снижает затраты производителей. Также аналитика способствует повышению безопасности для потребителей и уровня обслуживания со стороны производителей. Это еще один пример ситуации, когда в выигрыше остаются все. Организации, которые лучше других преуспеют в определении способов предупредительного техобслуживания и мониторинга работы своих продуктов, выделятся из толпы конкурентов.

Подведем итоги

Наиболее важные положения этой главы:

• Сегодня многие примеры операционной аналитики в действии включают довольно простую аналитику. Со временем уровень сложности будет возрастать.

• Операционная аналитика может обеспечить клиентам совершенно новый уровень сервиса и кастомизации. Преуспела в этом компания Walt Disney.

• Когда нарушается расписание авиарейсов, операционная аналитика позволяет смягчить последствия для пассажиров, а также сэкономить время и деньги для авиакомпаний.

• В некоторых процессах все могут определить миллисекунды. Компьютеризированные трейдеры фондового рынка вкладывают огромные суммы денег в то, чтобы выиграть всего несколько миллисекунд себе для анализа.

• Обеспечивая прозрачность, операционная аналитика может защитить как организации, так и их клиентов. Примером тому – продукт SenseAware компании FedEx.

• Операционная аналитика может сделать более безопасными места, которые мы посещаем и где живем, благодаря предсказывающему контролю и гарантировать качество продуктов питания благодаря использованию датчиков для контроля за состоянием окружающей среды.

• Государственные органы могут значительно повысить свою эффективность за счет внедрения операционной аналитики, учитывая масштабы и пресловутую неэффективность многих их действий.

• Повышение эффективности операций даже на малую долю может принести весомую финансовую отдачу. Это особенно справедливо для таких областей, как энергетика, где GE проделала много соответствующей работы.

• Когда операционная аналитика выполняется хорошо, например как в беспилотных автомобилях или мониторинге состояния здоровья, пользователи даже не замечают ее присутствия. Им просто остается наслаждаться улучшенным качеством жизни.

• Данные и аналитика уже активно преобразуют сферу здравоохранения. Операционная аналитика позволит внедрить новые, более эффективные и дружественные к пациентам процедуры.

• Всегда ищите новые способы использования данных, специально собираемых в операционных целях. Подобно тому, как определение местонахождения при помощи GPS может повлечь за собой улучшение трафика, так и многим другим данным можно найти разнообразное применение.

• В добавление к использованию источника данных в тактической операционной аналитике попробуйте найти способы использовать его и в стратегических целях.

Часть II
Закладываем основу

Глава 4
Хотите бюджет? Разработайте бизнес-кейс!

Внедрение операционной аналитики требует инвестиций – в людей, инструменты и технологии, которые необходимы для успешной реализации операционно-аналитических процессов. Процесс преобразования аналитики в операционную не будет ни дешевым, ни легким, но при соблюдении правил может с лихвой окупиться. Разумеется, добиться выделения инвестиций сегодня ничуть не легче, чем когда-либо в прошлом. Следовательно, разработка бизнес-кейса для операционной аналитики становится важнейшим шагом.

В этой главе мы рассмотрим основные принципы и концепции, которые помогут вам разработать бизнес-кейс для операционной аналитики в вашей организации. Многие из них могут быть применены в более широком плане для обоснования инвестиций в аналитику вообще. Хорошая новость состоит в том, что вы и ваша организация можете преуспеть в своем деле, если уделите время и силы разработке бизнес-кейса с учетом некоторых уникальных аспектов аналитики.

Определение приоритетов

Прежде чем приступать к составлению бизнес-кейса для операционной аналитики, необходимо определить, какие инвестиции он будет предполагать и как будет их распределять. Четкая направленность и форма изложения так же важны для бизнес-кейса, как и факты и цифры для его обоснования. В этом разделе мы обсудим, как правильно в начале определить перспективу, чтобы сразу предоставить вашему бизнес-кейсу максимальные шансы на успех. Ряд небольших улучшений общепринятой практики позволит сделать бизнес-кейс более интересным и убедительным, а следовательно, повысит вероятность его одобрения.

Начните с бизнес-проблемы, а не с данных или технологии

Во второй главе мы уже говорили о том, что необходимо сначала определить бизнес-проблему, а уже потом собирать под нее данные. Запускать сбор данных или приобретать технологию, не имея четкого плана, – заведомо проигрышная стратегия. Соответственно бизнес-кейс надо разрабатывать не ради приобретения нового источника данных или новой технологии, а ради решения реальной проблемы, с которой столкнулась организация. Если повезет, приобретение потрясающего нового источника данных или программного обеспечения действительно может стать необходимым условием для решения обозначенной проблемы. Грамотно составленный бизнес-кейс не предполагает отказа от покупки технологий, инструментов и источников данных, а просто помещает ее в правильный контекст.

Разница между сосредоточением внимания либо на технологиях, либо на бизнесе отражает разницу между обоснованием либо затрат, либо инвестиций. В большинстве организаций гораздо проще заинтересовать людей бизнес-кейсом, который позволяет решить конкретный набор деловых проблем, чем бизнес-кейсом, который позволяет решить конкретный набор технических проблем. Я не понимаю, почему так много организаций продает услуги по приобретению данных или технологий, а не решения проблем. Давайте рассмотрим две гипотетические дискуссии, чтобы проиллюстрировать разницу между этими подходами.

В первом случае вице-президент по информационным технологиям крупной энергетической компании в одиночку приходит на заседание ее правления и говорит: «Нам необходимо организовать сбор сенсорных данных в нашей инфраструктуре умных электросетей. Это обойдется нам в несколько миллионов долларов. Все наши бизнес-партнеры запрашивают эти данные и готовы частично профинансировать проект. Таким образом, мы можем покрыть все расходы на сбор и хранение данных за счет предлагаемых ими средств с небольшим добавлением наших пошаговых инвестиций в ИТ».

Организуйте совместный проект

Сделайте деловое предложение по инвестициям в операционную аналитику в виде совместного проекта бизнеса и ИТ-службы. Сосредоточьтесь на решении конкретной бизнес-проблемы, а не на покрытии затрат на ИТ, которые должны рассматриваться всего лишь как необходимый компонент общего решения.

Во втором случае вице-президент по ИТ приходит на заседание комитета вместе с партнером по бизнесу, также в ранге вице-президента. Совместно они сообщают следующее: «Мы собираемся сделать так, чтобы наши существующие мощности могли удовлетворять спрос потребителей в течение следующих пяти лет, что позволит нам отсрочить строительство нескольких новых электростанций. Мы планируем добиться этого, стимулируя клиентов изменить свои привычные модели потребления, чтобы мы могли снизить уровни пикового спроса путем анализа сенсорных данных от наших умных электросетей. Разумеется, сбор, хранение и анализ этих данных обойдутся нам в несколько миллионов долларов. Но эти расходы будут с лихвой компенсированы теми десятками миллионов долларов, которые, как мы установили, можно сэкономить за счет отсрочки строительства новых электростанций. К тому же мы сможем выполнить много другой аналитики, как только получим данные от умных электросетей».

Первое предложение свелось к затратам и данным, исходило из интересов ИТ-службы и не очень убеждало, несмотря на обещание покрыть расходы. Второе предложение исходило из интересов бизнеса при поддержке ИТ-службы и сосредоточивалось на экономической ценности сбора данных, а не на затратах. Как вы думаете, какое предложение руководство компании сочтет более привлекательным?

Сосредоточьтесь на доходах, а не на затратах

Предыдущие примеры иллюстрируют два подхода к запросу на финансирование. Главное различие между ними состоит в том, что первый просто пытается оправдать себя, делая акцент на нейтральных затратах, тогда как второй стремится извлечь значительную экономическую выгоду. К сожалению, многие заявки на инвестирование, связанные с аналитикой и технологиями, уделяют слишком большое внимание затратам и способам компенсации этих затрат. Полезнее же затраты просто представить в качестве части высокоэффективного решения, как это показано в таблице 4.1.


Отчасти такой акцент на затратах объясняется тем, что в прошлом инвестиции в технологии было принято обосновывать именно таким образом. Эти инвестиции нередко включали в себя огромную предоплату, которой обременяли широкий спектр производств, способных со временем компенсировать затраты. Например, в связи с огромной стоимостью больших ЭВМ в 1980-е гг. инвестиции в них ни за что бы не получили одобрения только ради удовлетворения нескольких аналитических потребностей. Для обоснования такой покупки ЭВМ должна была удовлетворять широкий спектр потребностей в масштабах всей организации.

Сегодня же инструменты и технологии зачастую относительно недороги, так что можно обойтись скромными инвестициями. Выгоды, достигнутые благодаря начальным инвестициям и начальному внедрению аналитики, могут быть использованы для того, чтобы обосновать дальнейшее финансирование. Инвестиции в аналитику больше не превращаются для организации в масштабные затраты, неподъемные для бизнеса. Благодаря сегодняшней гибкой структуре затрат нередко можно начать внедрение аналитики в гораздо меньшем масштабе, и зачастую на уровне бизнес-подразделения вполне можно выполнить простой анализ рентабельности.

Нацельтесь на факторы, определяющие различия, а не на поэтапные улучшения

Захватывающие новые концепции обычно привлекают больше внимания, чем улучшения уже существующих концепций. Это же верно и в случае аналитики. Если новые данные и новая аналитика могут быть использованы для решения новых проблем, будет гораздо легче привлечь внимание к бизнес-кейсу. Решение новых проблем при помощи новых данных зачастую обещает более весомую финансовую отдачу, чем при простом приспособлении существующих аналитических процессов к решению существующих проблем. Вместе с тем нередко можно разработать план, который предусматривает как краткосрочные поэтапные улучшения, так и долгосрочную конкурентную дифференциацию. Такая ситуация особенно благоприятна, поскольку обещает быстрый и наглядный прогресс в ходе достижения крупных долгосрочных преимуществ. Это будет победа сразу в двух измерениях.

Отметим одну из самых замечательных особенностей, связанных с появлением больших данных (см. вторую главу) и Аналитики 3.0 (см. первую главу), – возможности для применения аналитики расширяются и намного превзошли те, что были еще несколько лет назад. Обязательно отразите это при разработке своего бизнес-плана. Вдохновляющий мир больших данных и операционной аналитики открывает перед организациями широкие возможности для того, чтобы сосредоточиться на конкурентной дифференциации, и в то же время вносить поэтапные улучшения в существующие аналитические процессы. Как мы уже убедились, собираемым данным очень часто можно найти самое разное применение. Это означает, что, даже если кейс создан для решения одной-двух конкретных бизнес-проблем, в нем необходимо упомянуть и грядущие выгоды, которые могут появиться и в других областях, даже если пока что они расплывчаты и неопределенны. Процесс поиска новых ценностей называют еще «разговором с данными». Такой «разговор» способен привести к новым знаниям, идеям – и прибылям.

Конкурентная дифференциация обеспечивает поддержку

Сегодня часто можно использовать аналитику для того, чтобы с самого начала сделать организацию несхожей с другими. Даже если вы нацеливаетесь на поэтапные улучшения, постарайтесь обозначить конкурентные дифференциации на будущее.

Давайте рассмотрим следующий пример. Не будет ли интересно ресторанам или магазинам розничной торговли узнать, сколько людей посещают их каждый день и что это за люди? Могу побиться об заклад, что будет интересно, а помогут им данные о местоположении абонентов, создаваемые мобильными телефонами. Если провайдер сотовой связи хочет окупить затраты на хранение в операционных целях детализированных данных о местоположении абонентов, он может рассмотреть и такие альтернативные варианты их применения, как предоставление магазинам и ресторанам информации о потоке посетителей. Провайдер может даже взымать плату с ретейлеров за информацию о том, сколько человек ежедневно проходят или проезжают мимо их магазинов.

Путем сопоставления данных о местоположении с демографическими данными и данными об использовании мобильных телефонов можно предоставлять подобную информацию и с разбивкой людей по категориям. Предложение такой аналитической услуги может стать для провайдера конкурентной дифференциацией, создать новый поток доходности и окупить затраты на сбор для себя операционных данных. Обратите внимание на то, что я не предлагаю провайдерам разглашать любую информацию о любом индивидуальном абоненте. Это было бы нарушением неприкосновенности частной жизни, о чем мы подробно поговорим в шестой главе. Провайдер будет предоставлять агрегированные сведения, например такие: ежедневно мимо дома № 124 на Мейн-стрит в среднем проходят 200 человек, из которых 30 % имеют годовой доход свыше $100 000.

Чтобы созреть для предоставления таких услуг, организации может потребоваться время. Но обсуждение подобного варианта позволяет выявить бóльшую ценность нового источника данных, которую он постепенно способен приобрести. Это может сильнее заинтересовать инвесторов, чем первоначальные планы, нацеленные только на извлечение прибыли в краткосрочном периоде. Даже если организация сумеет преодолеть планку рентабельности, установленную на основе первоначальных краткосрочных инициатив, определенный аналитикой потенциал в дальнейшем может поспособствовать одобрению новых инвестиций.

Выбор правильных критериев принятия решения

При разработке бизнес-кейса для операционной аналитики необходимо определить критерии, которые станут играть решающую роль при принятии решения. Другими словами, что именно позволит максимизировать или минимизировать инвестиции? Причем необходимо не только правильно определить критерии, но и учесть все последствия каждой альтернативы. При оценке затрат и выгод от внедрения операционной аналитики следует принимать во внимание множество факторов. Потребуются и новые критерии, которые не так широко использовались в прошлом.

В качестве критериев при принятии решения об инвестициях в аналитику нельзя использовать классические ИТ-метрики, такие как цена за терабайт, узел оборудования, лицензию на рабочее место или время обработки запросов. Разумеется, все эти критерии могут быть приняты во внимание, чтобы убедиться в их соответствии нормам, но не могут быть единственными. Одним из ключевых критериев для аналитики является повышение продуктивности человеческого труда, которое может быть достигнуто при инвестировании того или иного варианта. Например, рассмотрите следующие вопросы:

• Насколько быстрее и эффективнее специалисты-аналитики смогут выполнять свои профессиональные обязанности при каждом варианте инвестирования?

• Насколько эффективно организация сможет разрабатывать, тестировать и внедрять новые операционно-аналитические процессы при каждом из вариантов?

• Насколько легко будет экспериментировать с новыми аналитическими техниками?

• Сможет ли оборудование быстро усваивать новые данные и поддерживать стремительные изменения?

• Потребуются ли новые и, возможно, дорогостоящие наборы навыков?

Все эти соображения имеют значение для принятия решений об инвестициях в операционную аналитику и должны применяться для каждого из рассматриваемых вариантов.

Чем быстрее команда аналитиков сможет создать для организации новые аналитические наработки и внедрить их в операционный контекст, тем выше будут доходы. Повышенную цену за терабайт можно оправдать, если команда сумеет выполнять аналитику намного быстрее по сравнению с более дешевым вариантом. Можно заплатить побольше и за лицензию на аналитическое приложение, если оно является более надежным и удобным в использовании. Все это позволит получить результаты наиболее эффективным образом.

Не так уж и сильно отличается это от того, как вы принимаете решение о покупке вещей для личного пользования. Например, многие готовы заплатить подороже за компьютер с бóльшим объемом памяти или диска либо другими важными для пользователя характеристиками. А вот самый дешевый компьютер способен значительно затруднить выполнение важных для вас задач. Например, если у него недостаточно места на диске для хранения всех ваших видеоматериалов, его будет трудно использовать как платформу для архивирования и редактирования видео. В этом случае покупка более дорогого компьютера вполне себя оправдает.


    Ваша оценка произведения:

Популярные книги за неделю