355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Б. Суслов » Звук и слух » Текст книги (страница 4)
Звук и слух
  • Текст добавлен: 24 сентября 2016, 07:25

Текст книги "Звук и слух"


Автор книги: Б. Суслов


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 4 (всего у книги 4 страниц)

4. Невидимые преграды

Наблюдается отражение звуков и на открытом воздухе, – правда, гораздо реже, чем в закрытых помещениях. Это – всем знакомое эхо. Как же оно возникает?

Пусть отражающая поверхность – гора, скала, стена большого дома или опушка леса – находится от нас на расстоянии ста метров. Если крикнуть, то звук дойдёт до этой поверхности, отразится от неё и возвратится к нам. При этом он пройдёт путь в двести метров и затратит немного больше половины секунды времени. Но мы уже знаем, что два звука, следующие друг за другом с промежутком, большим 1/15 доли секунды, мы слышим раздельно. Поэтому, произнося короткое слово в один, два слога, можно слышать его полное повторение. Если же произносить слово более длинное, например, бар-ри-ка-да, то первые два слога успеют возвратиться к нам в тот момент, когда мы произносим последние. А так как отражённые звуки более слабые, то мы их не услышим. Спустя четверть секунды после произнесения последнего слога да придёт отражённый слог ка, а ещё через четверть секунды возвратится и слог да. В результате мы ясно услышим: -а-да.

Когда отражающих поверхностей много и находятся они на разных расстояниях, то от более удалённых поверхностей отражённые волны придут позднее, и тогда можно слышать многократное эхо. Примером такого многократного эхо служит, например, гром. При электрическом разряде в воздухе – молнии – раздаётся треск; многократное отражение его от различных поверхностей и создаёт грандиозное эхо – раскаты грома.

Мы привыкли слышать эхо у опушки леса, вблизи скал или в горах, т. е. там, где есть видимая преграда на пути звука. Но ведь эхо возникает и на равнине, и в поле, в пустыне, и на море, где для звука твёрдых преград нет. Как же объяснить такое загадочное эхо?

Оказывается, что звук может отражаться даже от воздуха! Происходит это в тех случаях, когда звуковая волна встречает на своём пути слои воздуха с другой температурой или другой скоростью. Представим себе, что она встретит более нагретый слой воздуха. Её направление тотчас же изменится, и может быть так, что в конце концов звук возвратится обратно. То же самое произойдёт и в том случае, если звук встретит слой воздуха, содержащего другое количество водяных паров, т. е. более влажного или более сухого. Такие отражающие звук «облака» не имеют ничего общего с обыкновенными облаками и туманом. Они постоянно имеются в воздухе, создавая невидимые преграды звуку. Вот почему иногда и в безоблачный день на равнине можно слышать эхо. А дождь, снег и туман при равномерном распределении в воздухе, как это ни покажется вам странным, в очень малой степени препятствуют распространению звука.

5. Слепые разведчики

Когда называют ваше имя, вы поворачиваете голову в сторону зовущего. Обычно вы легко отыскиваете направление на источник звука. Человек с нормальным слухом может определять это направление с точностью до 4 градусов. Это значит, что, находясь от источника звука на расстоянии ста метров, человек по слуху может указать путь к нему с ошибкой всего на 6–7 метров в сторону. При увеличении расстояния увеличивается и ошибка в определении. Так, если за километр идёт стрельба, то местонахождение орудия на слух может быть определено с точностью до 60–70 метров вправо или влево от истинного положения.

Направление вверх или вниз мы определяем на слух значительно хуже. Здесь, очевидно, сказывается отсутствие практики в занятиях такого рода.

Что необходимо иметь, чтобы быть способным находить по слуху источник звука?

Оказывается, надо иметь два уха! Человек, глухой на одно ухо, определяет направление с большим трудом и менее точно. В этом легко убедиться. Закройте одно ухо и оба глаза и покрутитесь немного на одном месте. После этого пусть кто-нибудь вас позовёт. Не открывая глаз, укажите рукой, откуда вас зовут, и в большинстве случаев вы грубо ошибётесь. Такая способность определять направление на источник звука названа бинауральным эффектом (бинауральный означает «двуухий»).

Это явление объясняют двумя причинами. Если источник находится справа, то правым ухом мы слышим звук более громкий, чем левым. Голова как бы загораживает левое ухо от попадания в него звуковой волны (правда, это справедливо только для высоких звуков; звуки низкие огибают голову, как всякое небольшое препятствие, и попадают в левое ухо почти не ослабленными). Поэтому в одно ухо звуков попадает больше, а в другое меньше. Одним ухом мы слышим громче, другим тише. Эта разность в громкости перерабатывается в нашем мозгу в чувство определённого направления. Мы поворачиваем голову до тех пор, пока оба уха не будут слышать одинаково громко. А это наступит тогда, когда источник звука окажется прямо перед нами.

Здесь уместно привести интересный пример того, как волны низких звуков огибают препятствия, стоящие на их пути. Достаточно свернуть с большой шумной улицы в переулок, как сразу же изменяется характер шума. Резкие пронзительные гудки, звонки, крики и лязг металла частично отразятся стенами домов, частично поглотятся ими и затухнут, а низкие звуки свободно огибают дома и проникают в узкие боковые улицы, наполняя их ровным приглушённым шумом.

Укажем и вторую причину бинаурального эффекта. Когда источник звука находится сбоку, то одно ухо к нему ближе, чем другое. Поэтому звуки приходят к обоим ушам не одновременно. Эта разность во времени прихода звука и помогает нам также определять направление на источник звука. Чем больше расстояние между ушами, тем звук позже приходит во второе ухо; тем легче и точнее можно определить направление на источник звука. По-видимому, слоны в этом отношении находятся в выигрышном положении перед человеком; их уши широко расставлены.

Оба эти объяснения не противоречат друг другу. Вероятно, определять направление на источник звука помогает нам и разная громкость, и разное время прихода звуковой волны к обоим ушам.

А как же мы отличаем звук, идущий спереди, от звука, идущего сзади? Ведь в этом случае одинаково сильный звук приходит одновременно к обоим ушам.

Понаблюдайте, как прислушивается к чему-нибудь человек. Прежде всего голова его слегка наклоняется набок и затем немного поворачивается в сторону. Этим положением достигается и разность громкости и разность во времени прихода звука к ушам, то есть как раз то условие, которое позволяет лучше определить направление.

Особенно точно определяют направление на источник звука слепые. Например, в период первой мировой войны в английскую армию привлекали слепых в качестве слухачей-разведчиков для обнаружения неприятельских самолётов и артиллерийских батарей.

Бинауральный эффект положен и в основу устройства звукоулавливателей (рис. 15). Соединённые попарно четыре рупора позволяют производить пеленгование, т. е. определение направления, как в горизонтальной, так и вертикальной плоскостях. Линия пересечения этих плоскостей даёт направление на летящий самолёт.


Рис. 15. Звукоулавливатель

6. Неслышимые звуки

Если из кристалла горного хрусталя или кварца вырезать определённым образом ровную пластинку, посеребрить её противоположные грани и присоединить её к радиопередатчику, то пластинка в такт с работой прибора то утолщается, то делается тоньше. Грани пластинки совершают такое же колебательное движение, как и ветви звучащего камертона. В среде, окружающей пластинку, возникают чередующиеся разрежения и сгущения, то есть то, что мы называем звуковой волной. Применяя источники переменного тока или генераторы высокой частоты, можно заставить колебаться пластинку кварца миллионы и сотни миллионов раз в одну секунду. Ясно, что образующаяся при этом волна лежит далеко за пределами чувствительности нашего уха. Звуки такой частоты мы не слышим, это – ультразвуки.

В отличие от слышимых звуков, распространяющихся в однородной среде по всем направлениям, ультразвуки идут в виде узкого луча и могут быть посланы источником в желаемом направлении.

В жидкостях и твёрдых телах ультразвуки распространяются, почти не ослабевая с расстоянием. В воздухе их сила быстро падает.

Эти замечательные свойства ультразвуков положены в основу устройства ряда ценных приборов. Среди них широкое распространение получили так называемые ультразвуковые локаторы и дефектоскопы.

Ультразвуковой локатор состоит из излучателя ультразвука и связанного с ним сложного приёмного радиоустройства.

Через определённые промежутки времени излучатель посылает короткие ультразвуковые сигналы. Эти сигналы идут по прямой линии, пока не встретят на своём пути какого-либо препятствия. Натолкнувшись на него, они отразятся и частично возвратятся обратно к источнику, как возвращается к нам эхо. Зная скорость распространения ультразвука и время, прошедшее от момента посылки сигнала до его возвращения, легко рассчитать расстояние до предмета, отразившего ультразвук. Такие локаторы устанавливаются обыкновенно на кораблях. С их помощью определяются глубины морей и океанов, обнаруживаются мели, рифы и другие опасные для плавания места. В военное время отыскиваются неприятельские подводные лодки и мины. На рыболовецких судах локатор помогает «нащупать» косяк рыбы.

Нет больше риска плавать ночью и в тумане – прибор укажет безопасный путь. Никогда не повторится трагедия, постигшая в 1912 году один из самых больших в мире океанских пароходов «Титаник», который наскочил на плавучую ледяную гору (айсберг) и затонул так быстро, что из нескольких тысяч пассажиров и команды спаслось только несколько человек.

Немалую пользу приносят в технике изобретенные проф. Соколовым дефектоскопы, которые с помощью ультразвуков позволяют обнаруживать изъяны в металлических изделиях.

Укажем ещё на применение ультразвуков в медицине.

При ослаблении сердечной деятельности часто больному помогает камфора. Врачи в этих случаях обычно вводят раствор камфоры под кожу. Но вся беда в том, что камфора плохо растворяется и поэтому её действие задерживается. Иногда эта задержка может стать роковой для человека. Ввести камфору непосредственно в кровь нельзя: нерастворённые частицы её могут закупорить кровеносные сосуды и тогда наступит быстрая смерть. Но стоит только подвергнуть смесь воды с камфорой облучению ультразвуком, как частички камфоры будут так измельчены, что их без опасения можно вводить в вену больного.

Трудно перечислить все те области, где находят теперь применение ультразвуки. Всё чаще и чаще они используются в лабораториях и в различных отраслях производства. И если ещё недавно казалось, что в науке о звуках всё исследовано и остаётся, может быть, только уточнить некоторые закономерности, то с открытием ультразвуков перед наукой встало много новых сложных вопросов.

В заключение мы приведём один интересный пример использования ультразвуков животными.

Внимание биологов давно привлекала особенность полёта летучих мышей. Летучая мышь плохо видит. Тем не менее она быстро и свободно может летать в темноте, не наталкиваясь даже на такие малозаметные препятствия, как натянутые проволоки. Даже совершенно ослеплённая мышь сохраняет способность обходить препятствия на своём пути. Правда, не всякую преграду обнаруживает мышь; например, она может натолкнуться на голову, покрытую волосами, на мягкую мебель, шторы, драпировки и прочее. Разгадка этого своеобразного явления оказалась несколько неожиданной. Летучая мышь при полёте издаёт не только характерный хриплый звук, но ещё и ультразвук, который она порциями посылает по направлению своего движения. При этом своими широкими ушными раковинами она улавливает отражённую волну. Если отражённого сигнала нет, мышь спокойно продолжает полёт. Но вот мышь ловит отражённую волну – значит, на пути есть какое-то препятствие. Чем ближе она подлетает к нему, тем чаще посылает своих «разведчиков», меняя при этом направление полёта в поисках свободного пути.

Каким образом учёные раскрыли эту тайну летучей мыши?

Навстречу летящей мыши при помощи особого прибора посылались такие же сигналы, какие она сама посылает. Мышь принимала эти сигналы за эхо своих собственных сигналов и сворачивала в сторону, облетая несуществующие преграды!

Но почему же мышь не замечает мягких предметов и наталкивается на них? Очень просто. Эти предметы поглощают почти целиком падающие на них ультразвуки, и мышь, не получая обратно своих сигналов, принимает бархат, вату, волосы и другие мягкие предметы за пустоту.

Заключение

Много ещё интересного имеется в области звука и слуха. Нередко мы сталкиваемся в жизни с такими звуковыми явлениями, которым затрудняемся дать правильное объяснение. Рассказать обо всём этом мы не могли в нашей маленькой книжке. Если читатель захочет глубже ознакомиться с этим вопросом, он найдёт богатый материал в специальной литературе.

Наша задача заключается в другом – пробудить у читателя интерес к этой замечательной области естествознания и помочь сделать в ней самые первые шаги.

В нашей стране созданы условия для всемерного движения вперед советской науки. В капиталистических странах учёные, поставившие свою мысль на службу милитаризму, используют новейшие достижения естествознания для разработки новых средств уничтожения людей. Величайшие открытия человеческой мысли поставлены в капиталистических странах на службу империалистической агрессии. Наука в капиталистических странах служит интересам монополий. Наука в Советском Союзе полностью подчинена благородным задачам строительства коммунистического общества, росту благосостояния всего советского народа.



Оглавление

Введение … 3

I. Рождение звука … 4

   1. Движение особого рода … —

   2. Высота звука … 7

   3. Звуковые волны … 9

   4. Проводники звука … 13

II. Звуки организованные и неорганизованные … 15

   1. Шум … —

   2. Музыка … 18

   3. Привычные звуки … 21

III. Как слышит ухо … 24

   1. Устройство уха … —

   2. Арифметика звуков … 27

   3. Сколько звуков слышит человек? … 30

   4. Могут ли слышать глухие? … 31

IV. Звук в пространстве … 33

   1. Скорость звука … —

   2. Когда слышно вдали и не слышно вблизи … 37

   3. Когда шепчут стены … 42

   4. Невидимые преграды … 45

   5. Слепые разведчики … 47

   6. Неслышимые звуки … 50

Заключение … 53


    Ваша оценка произведения:

Популярные книги за неделю