355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Б. Сергеев » Я познаю мир. Тайны человека » Текст книги (страница 9)
Я познаю мир. Тайны человека
  • Текст добавлен: 7 ноября 2017, 23:00

Текст книги "Я познаю мир. Тайны человека"


Автор книги: Б. Сергеев


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 9 (всего у книги 17 страниц)

Окна в мир

Какие органы чувств наиболее важны для человека? Большинство людей скорее всего назовет зрение. Действительно, большую часть информации об окружающем мире человек получает с помощью зрения. То же самое относится к нашим ближайшим родственникам – обезьянам. Для них большое значение имеет также и кинестетический анализатор – способность очень точно оценивать положение различных частей своего тела, их перемещения и нагрузки, которые они при этом испытывают. Без этого лазать по деревьям было бы чрезвычайно опасно. Для собак важнее обоняние и слух, а для рыб – показания органов боковой линии, позволяющие ощущать движения воды.

Глаза, как известно, воспринимают световые волны. У человека они оснащены двумя типами рецепторов – воспринимающих элементов, так называемыми палочками и колбочками. Колбочек в человеческом глазу около 7 миллионов, а палочек значительно больше, около 130 миллионов. В глазу светочувствительные элементы распределены неравномерно: колбочки расположены гуще веего в центральной части зрительного поля. Особенно тесно они сидят в так называемом желтом пятне (оно действительно имеет желтый цвет), которым мы обычно пользуемся, когда читаем или детально рассматриваем какие–нибудь предметы.

Другое назначение колбочек – цветоощущение. Среди позвоночных хорошо различают цвета большинство дневных животных, а вот собаки и кошки цвета практически не воспринимают. Кстати, и копытные животные, в том числе быки, вопреки твердо установившемуся мнению о том, что они будто бы не любят красный цвет, на самом деле не могут его отличить от зеленого, синего или даже черного цвета одинаковой с ним насыщенности.

Желтое пятно – важнейший участок глаза. Именно оно дает возможность рассмотреть мельчайшие детали объекта. Это объясняется высокой концентрацией здесь светочувствительных элементов, особенно колбочек, а также тем, что каждая колбочка соединена со своей собственной нервной клеткой. Ей и передает она всю полученную информацию* Палочки такой индивидуальной нервной клетки не имеют и вынуждены группироваться целыми компаниями вокруг одной общей нервной клетки. Благодаря этому, когда свет попадает на две колбочки, мы видим световые точки. Если те же две световые точки осветят две палочки, то наш мозг увидит, что их две только в том случае, когда они попадут на светочувствительные элементы из разных компаний палочек. Другое дело, когда освещены две палочки из одной компании, тогда глаз увидит всего одну световую точку.

Кроме желтого пятна, колбочки есть и в остальных участках центральной части зрительного поля, только концентрация их здесь значительно ниже. А на периферии колбочек пет вовсе. Там находятся только палочки – световоспринимающие элементы более высокой чувствительности. Так как несколько палочек посылают свою информацию в одну и ту же нервную клетку, они даже в сумерки, когда каждая из них недостаточно сильно возбуждена, общими усилиями смогут возбудить свою нервную клетку, и глаз все–таки что–то увидит, тогда как колбочки, адресующиеся только к своей личной нервной клетке, нередко в одиночку возбудить их не в состоянии.

К помощи палочек мы прибегаем в сумерках, когда колбочки становятся просто помехой. Мы могли бы видеть ночью гораздо, лучше, если бы не привычка фокусировать изображение на желтом пятне. Поэтому в сумерках мы четче видим предметы, изображение которых падает на боковые части зрительного поля, а это происходит, когда мы не смотрим на предмет, который случайно увидели.

Кроме желтого поля, недалеко от него расположено второе пятно – слепое. Здесь сквозь оболочки глаза выходят наружу волокна зрительного нерва. На этом участке совсем нет светочувствительных элементов, и пятно ни в дневном, ни в ночном зрении никакого участия не принимает. Удивительно, что мы совершенно не замечаем в собственном поле зрения довольно большой дырки. Это происходит потому, что мы смотрим на мир двумя глазами, и на слепые пятна каждого из глаз попадают различные участки изображения. Кроме того, при рассматривании какого–либо предмета наш глаз не остается неподвижным, а скользит по контурам и наиболее существенным местам рассматриваемого предмета, и к тому же совершает еще мелкие дрожательные движения. Изображение предмета очень быстро перемещается по сетчатке, и это дает нам возможность видеть все его части.

Очень интересная особенность глаз позвоночных, от амфибий до человека, состоит в том, что при пристальном рассматривании неподвижным глазом неподвижного предмета он может быть виден лишь в течение очень короткого времени, а потом глаз перестает его замечать, пока тот не шелохнется или не дрогнет сам глаз. Ученые сумели это понять довольно давно, а вот подтвердить свою догадку им долго не удавалось. Сделать это было нелегко, поскольку человеческий глаз, кроме значительных поисковых движений, постоянно дрожит, совершая крохотные колебания. Все же ученым удалось найти остроумный способ для экспериментального изучения этого вопроса. Сделать глаз неподвижным очень трудно, поэтому предметик, который предстояло рассматривать, прикрепили непосредственно к глазному яблоку. Благодаря этому, как бы глаз ни двигался, изображение предмета попадало на одно и то же место сетчатки. Исследование подтвердило, что неподвижного предмета глаз не видит!

Чувствительные клетки органов чувств обладают интересной особенностью: ощущения, вызванные каким–нибудь раздражителем, исчезают не сразу после прекращения их действия. Благодаря этому мы не видим отдельные световые вспышки, если они следуют с частотой 16–18 в секунду. В этом случае нам кажется, что лампочка просто зажглась и горит. Эти свойства зрения позволили создать кино. Благодаря тому, что во время демонстрации кинофильма отдельные кадры–диапозитивы проецируются на экран с частотой 24 в секунду, мы видим непрерывное изображение, и у нас возникает иллюзия реальности движений.

Как мы видим то, что видим?

Глаз – это оптический прибор. По своему устройству он напоминает подзорную трубу, телескоп и фотоаппарат. Эти приборы просты в обращении, но все же, чтобы уверенно ими пользоваться, приходится учиться. С глазами та же история: нужно освоить правила использования глаз и научиться понимать информацию, которую они нам поставляют, то есть, попросту говоря, необходимо научиться смотреть.

Одна из сложностей зрения состоит в том, что световые лучи, проникающие в наш глаз, проходят сквозь крохотную двояковыпуклую линзу – хрусталик, и как в таких случаях полагается, преломляются на нем, а поэтому изображение рассматриваемых объектов, сфокусированное на задней стенке глаза (на его светочувствительной поверхности), оказывается ’перевернутым вверх ногами. Почему же мы видим мир нормальным, какой он есть на самом деле?

Оказывается, наш мозг, сопоставляя показания, получаемые из глаз, с информацией, идущей от других органов чувств, главным образом от кожных и мышечных рецепторов, еще в раннем детстве привыкает в ней разбираться.

А что будет, если изображение на задней стенке глаза окажется ориентированным правильно? Что увидит наш глаз тогда? Впервые такой опыт поставил на самом себе английский психолог Д. Стрэттон. В первый момент мир показался ему опрокинутым. Однако уже на четвертый день ношения перевертывающего приспособления ученый обнаружил первые признаки того, что мозг начал переучиваться. На пятый день он мог свободно гулять в своем саду, а на седьмой – начал вновь получать удовольствие от красоты окружающего пейзажа.

В процессе переучивания существенную помощь оказывали другие органы чувств. Если воробей молчал, он казался прыгающим по дорожке сада, но как только раздавалось чириканье, Стрэттон замечал, что птица находится на дереве. Экипаж мог восприниматься стоящим вверх колесами, но если он трогался с места, то обретал правильное положение., Остановившиеся стенные часы воспринимались перевернутыми маятником вверх, н<| стоило ему прийти в движение, как изображение становилось правильным.

В конечном итоге после нескольких дней ношения очков, переворачивающих изображение, люди начинали видеть окружающий мир правильно и были даже способны водить машину. Чтобы достигнуть этого, нужно было вести активный образ жизни. Специальный эксперимент подтверждает это утверждение. Два человека одновременно надели пе* реворачивающие очки. Один из них свободно передвигался и мог делать все, что хотел. Второй все время находился в кресле на колесиках с заложенными за спиной руками. Ничего делать сам, даже есть и сморкаться, он не имел права. Возил его, кормил и ухаживал за ним первый испытуемый. Таким образом, находясь все время вместе, они дакали примерно равную нагрузку своему зрению, но переучивание произошло только у активного испытуемого. Пассивный не продвинулся в этом направлении ни на шаг.

Оказывается, что приспособиться к перевертывающим очкам, переучиться способен лишь мозг человека. Обезьяны с большим трудом после длительной тренировки несколько свыкались с жизнью в очках, перевертывающих изображение, но их поведение серьезно менялось.

Еще сильнее в подобных случаях страдает зрение низших животных. Легче всего опыты удавались на лягушках. Переворачивающие очки в этом случае не употреблялись. Лягушачий глаз ученые хирургическим путем поворачивали на 180 градусов. Оказалось, что лягушки совершенно не способны пользоваться перевернутыми глазами. Муха, ползущая у ног такой лягушки, казалась ей находящейся наверху. Туда лягушка и направляла выстрел своего языка.

Так же беспомощны бывают куры, если их заставляют носить очки, переворачивающие изображение. Даже небольшое вмешательство полностью нарушает зрительное восприятие. Призмы, надетые на глаза цыплят, сдвигали изображение всего лишь на 7 градусов в сторону, однако малыши, клюя зерна, всегда промахивались и оставались голодными. Переучиться они так и не смогли.

Море звуков

Народная поговорка гласит: не каждому слуху верь! И не веришь! Мы живем в хаосе звуков, но на многие ли из них обращаем внимание?

И божественные звуки, которыми мы наслаждаемся, и неприятные для нас шумы и звуки – это всего лишь колебания окружающего нас воздуха. Возникают эти колебания воздуха благодаря колебаниям других объектов: колебания струн музыкальных инструментов,.кожаной пленки, натянутой на барабан, голосовых связок в гортани человека... Если молотком ударить по стальной балке или по деревянному столбу, в веществе, из которого состоят эти объекты возникнут невидимые глазом микроскопические колебания. Они и породят звук и, может быть, очень сильный.

Что произойдет, когда мы ударим по стальной балке или по барабану? При ударе поверхность барабана продавится внутрь. То же самое произойдет с поверхностью стальной балки, только размер этого вдавливания будет так мал, что мы его не заметим, а может быть, и сама балка под воздействием удара отклонится в сторону на такую же незначительную величину. В тот момент, когда поверхность барабана или стальной балки отклонилась в сторону, около них образуется пустое пространство, и давление воздуха здесь понизится, но понизится только на короткий миг, так как сдвинутые поверхности возвратятся на прежние места и при этом потеснят находящийся там воздух. В результате у поверхности этих тел теперь возникнет крошечная область повышенного давления.

Поверхности, приведенные в движение ударом, некоторое время будут совершать колебательные движения. Размер этих колебаний будет понемножку уменьшаться, и наконец они затухнут. Но все время, пока происходят эти колебания, они вызывают сжатие воздуха, повышение его давления и последующее разряжение воздуха и падение его давления. Такие сжатия и разряжения слоя воздуха у поверхности колеблющихся тел вызовут аналогичные же явления в следующем, прилегающем к нему слое воздуха, а тот в свою очередь вызовет их в следующем слое, и так далее. И эти сжатия и разряжения будут стремительно распространяться во все стороны от места своего возникновения, как разбегаются по поверхности воды круговые волны от брошенного на нее камня. Достигнув наших ушей, эти колебания воздушной среды, эти звуковые волны вызовут у нас ощущение звука.

Таким образом, звук – это чередующиеся разряжения и сжатия среды. Для нас, существ сухопутных, это, в первую очередь, колебания окружающего нас воздуха.

Ушки на макушке

Вспомните фразу, мелькнувшую в стихотворении М.Ю. Лермонтова Бородино: «У наших ушки на макушке!» На самом деле и у русских, и у людей других национальностей уши располагаются не там. Другое дело животные, особенно те из них, что живут в степях и пустынях, в высокой траве и невысоком кустарнике. В этом случае такое расположение ушей на голове выгодно. Для улавливания звуков уши должны быть подняты как можно выше, туда, где распространению звуков ничто не мешает, где их легче всего уловить.

Местоположение на голове наших ушей объясняется тем, что предки человека, древние человекообразные обезьяны, жили в лесу на деревьях. Там звук мог идти со всех сторон, в том числе и сверху, и снизу, а нахождение их на макушке мешало бы улавливать звуки, идущие с земли. Если бы человек происходил от животных, формирование которых, как, например, ослов, с самого начала происходило на открытых пространствах, то сейчас мы имели бы проблемы с ношением головных уборов: надевать что–нибудь на голову мешали бы торчащие вверх уши, и нам пришлось бы делать в головных уборах прорези для ушей, как поступают на юге с шапочками для лошадей и мулов, предназначенных для предохранения головы животного от солнечных лучей, или подрезать собственные уши, как мы поступаем с ушами наших любимцев – собак определенных пород.

Задача органов слуха – определить, что служит источником звуковых волн, где он находится и какими свойствами обладает: неподвижен ли он, а если движется, то в какую, сторону и с какой скоростью. Вся эта информация должна быть получена (можно сказать, высосана из пальца) путем анализа упругих волн, распространяющихся в воздухе, воде или в твердых телах: в земле, древесине, в металле...

Работа слуховых органов человека не менее сложна, чем зрительных. Они обязаны уметь оперативно разбираться в длинных потоках сложных звуковых волн, какими является наша обыденная речь. А еще слуховые органы должны уметь улавливать тембр голоса, интонацию, узнавать знакомых людей по голосу. Между прочим, многие животные умеют это делать значительно лучше нас. Малые африканские фламинго узнают по голосу своего птенца среди 50–100 тысяч таких же малышей, всем скопом дожидающихся возвращения своих родителей.

Огромная ценность звуковой информации состоит в том, что пользоваться ею можно там, где зрение бессильно: в густом лесу, в тумане, в мутной воде, в темноте. Немаловажно и то, что звуки распространяются с большой скоростью – значительно быстрее, чем способно передвигаться любое живое существо. Это дает возможность заблаговременно получить достоверные сведения о всех живых созданиях, находящихся еще далеко, значительно раньше, чем с ними состоится личная встреча.

Орган слуха млекопитающих и человека имеет сходное строение и сконструирован достаточно сложно. Первый наш звукоулавливающий прибор – уши, правильнее сказать – ушные раковины. Они являются устройством, позволяющим улавливать звуки, распространяющиеся из определенной точки пространства, и создавать максимально благоприятные условия для их восприятия. Благодаря этому прочие звуки, возникающие где–то в стороне, не мешают анализировать и не заглушают заинтересовавший животное звук.

Насколько важны ушные раковины, нас убеждают животные, для которых тонкий слух особенно важен. Летом к нам на север прилетают ушаны – маленькие летучие мыши. Когда ушан спит, его уши сложены в гармошку и спрятаны под крыльями, но если ему вздумается взлететь, он расправляет их, и тогда выясняется, что их размер сопоставим с величиной туловища или существенно больше. Однако было бы ошибочным считать, что большие уши – это всегда приспособление для лучшего улавливания звуков. Огромные ушные раковины слонов и других обитателей степей и пустынь: ушастых ежей, пустынных лисичек – фенеков, тропических зайцев и американского кожаного кролика, чьи уши больше самого зверька, – это охладительные установки, позволяющие им спасаться от перегревания.

Уши большинства животных подвижны. Понаблюдайте, как оперируют своими ушами собаки, лошади, кролики, когда к чему–нибудь прислушиваются. Очень красиво смотрится, как слаженно поворачиваются уши антилоп в сторону заинтересовавшего их звука. Ушные раковины человека практически потеряли подвижность. Их расположение на голове позволяет лучше слышать звуки, идущие спереди. Поэтому, чтобы проанализировать слабые звуки, нам приходится поворачивать голову в их сторону.

Обычно мы даже не подозреваем, что ушные раковины помогают нам лучше слышать. Однако не думайте, что они нам не нужны или предназначены лишь для того, чтобы носить на них серьги. В действительности же, форма ушных раковин и слухового прохода создают благоприятные условия для восприятия звуков речи и для определения направления звуков. В этом можно убедиться самому. Попробуйте значительно изменить форму ушной раковины – смять ее рукой, и вы сразу почувствуете, что определять направление звуков, особенно слабых, стало труднее. Хрящевые бугорки внутри ушных раковин задерживают распространение звуков. Величина этой задержки меняется в зависимости от того, с какой стороны он приходит. Мозг использует эти задержки, чтобы повысить точность определения местоположения источника звуков.

Какое из ушей среднее?

Ушная раковина предназначена для улавливания звуковых волн. Она помогает им проникнуть в слуховой проход и отчасти усиливает звук, так как сама, а также стенки слухового прохода обладают способностью совершать колебания в ответ на колебания определенной частоты. Если органы наружного уха резонируют, то есть повторяют колебания звуковой волны, давление воздуха в слуховом проходе усиливается и может стать больше давления пришедшей звуковой волны. Это значит, что звук стал громче.

Слуховой проход, обеспечивающий звуковым волнам максимальные удобства для проникновения к воспринимающему аппарату звуковой системы, упирается в барабанную перепонку. Именно здесь кончается наружное ухо и начинается среднее, а барабанная перепонка служит в него дверью. Звуковод – не самая важная часть звуковоспринимающей системы. Звуки могут легко обходиться без специально для них предназначенных дорог, и чем более упругими свойствами обладает среда, в которой они распространяются, тем больше их скорость и тем меньше они теряют энергии. Однако им могут понадобиться «двери», чтобы переходить из одного помещения в другое. На границе двух сред потери энергии огромны. Лишь часть энергии звуковых волн проникнет из воздушной среды в воду. Другая ее часть, нередко более значительная, отразится от ее поверхности. Вот почему наружное ухо наземных животных, представляющее собой воронку, заполненную воздухом, необходимо только потому, что переход звуковых волн из воздуха в кожу затруднен. Иное дело – барабанная перепонка: она легко отзывается на приход звуковой волны и совершает колебательные движения с частотой, присущей этой волне.

Полость, находящаяся за барабанной перепонкой со всем что в ней находится, и является средним ухом. Она названа так потому, что находится в средней части звуковоспринимающей системы, так сказать, на полпути от наружного воздуха до нервных клеток, которые передают собранную информацию в мозг.

Среднее ухо находится внутри височной кости в заполненной воздухом барабанной полости. Она невелика, не больше 1 квадратного сантиметра и расположена между барабанной перепонкой и костным лабиринтом внутреннего уха. Внутри барабанной полости находятся три крохотные косточки – молоточек, наковальня и стремечко, соединенные между собою суставами. Свое название они получили за сходство с соответствующими предметами. Молоточек своей рукояткой прочно соединен с барабанной перепонкой, а другой его конец образует сустав с наковальней.

Второй сустав наковальня образует с головкой стремечка, а его основание упирается в перепонку овального окна, ведущую в святая святых слуховой системы, во внутреннее ухо.

Барабанные косточки среднего уха выполняют важную функцию: они переадресуют колебания барабанной перепонки мембране овального окна, а следовательно, и жидкости, которая заполняет полости внутреннего уха. Эти косточки, соединенные суставами, представляют собою систему рычагов. Благодаря этому амплитуда колебаний мембраны овального окна становится значительно меньше амплитуды колебаний барабанной перепонки, зато их сила возрастает, то есть и здесь происходит усиление волн сжатия и разряжения по сравнению со звуковыми волнами, возникавшими в слуховом проходе. Таким образом, в среднем ухе осуществляется второй этап усиления звуков.

Важным элементом среднего уха является глоточно–барабанный канал, больше известный по имени своего первооткрывателя, Б. Евстахия, как евстахиева труба. Канал начинается отверстием на передней стенке барабанной полости и заканчивается отверстием на боковой стенке носоглотки. Он не большой и не широкий:'..3–4 сантиметра длиной и 1–2 миллиметра диаметром. Канал выполняет несколько важных функций. Главная из них – вентиляционная, но речь идет не о проветривании, а о выравнивании давления воздуха между окружающей атмосферой и воздухом барабанной полости.

Каждому, вероятно, приходилось испытать, как у него закладывает уши. Это происходит при подъеме и спуске в лифтах высотных зданий, при взлете и посадке самолетов, у ныряльщиков, опускающихся на глубину нескольких метров, при спуске в глубокую шахту, а у особенно чувствительных людей может даже возникнуть при спуске в глубоко расположенные туннели метрополитена. Иногда при этом в ушах возникает острая боль и даже может произойти разрыв барабанной перепонки.

Неприятные ощущения и боль в ушах возникают потому, что канал забит слизью или не функционирует по какой–то другой причине и поэтому не обеспечивает выравнивания давления между барабанной полостью и окружающей средой. При подъеме в высоту воздух, не имеющий возможности выйти из барабанной полости и не испытывающий должного противодействия из–за падения давления наружного воздуха, с силой давит на барабанную перепонку, вызывая неприятные ощущения или боль. Противоположные явления происходят при спуске самолета. Так как при этом давление наружного воздуха быстро нарастает и, не встречая должного сопротивления со стороны воздуха барабанной полости, с силой давит на барабанную перепонку, растягивая ее и вызывая весь комплекс неприятных ощущений.

Обычно просвет евстахиевой трубы открывается при глотании, вот почему многие водолазы при спуске под воду совершают серию глотательных движений, а пассажирам самолетов раздают леденцы, чтобы вызвать у них непроизвольное проглатывание слюны.

Евстахиева труба используется также для освобождения барабанной полости от просачивающейся туда из окружающих тканей жидкости. Чтобы в ней не заводились микробы, специальные клетки стенок канала вырабатывают вещества, убивающие вредных вторженцев. Это тоже важная функция. У маленьких детей евстахиева труба нередко работает плоховато, что приводит к воспалению среднего уха, неприятному и опасному заболеванию.

Механическая энергия звуковых волн преобразуется в волосковых клетках в нервные импульсы, которые по самому короткому слуховому нерву поступают в мозг и, пройдя сложный путь в структурах мозга, в конце концов добираются до височной коры больших полушарий, где и осуществляется высший анализ звуков, в том числе сложных звуковых потоков человеческой речи.


    Ваша оценка произведения:

Популярные книги за неделю