355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Краткая история биологии. От алхимии до генетики » Текст книги (страница 3)
Краткая история биологии. От алхимии до генетики
  • Текст добавлен: 6 сентября 2016, 23:13

Текст книги "Краткая история биологии. От алхимии до генетики"


Автор книги: Айзек Азимов


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 3 (всего у книги 10 страниц)

Самым пугающим из всех прочих было его открытие в застойной воде из канавы, на которую он глядел через свои линзы, крохотных созданий, невидимых невооруженным глазом, имеющих все атрибуты жизни. Эти существа подобны животным (теперь они известны как protozoa, или простейшие – от греческого слова, означающего «первые животные»). Таким образом, начинает казаться, что не только существуют объекты слишком малые, чтобы быть видимыми невооруженным глазом, но есть еще и живые объекты этого сорта. Широкая новая территория открылась для биологии в целом перед изумленным взглядом человека, и родилась микробиология – изучение организмов слишком малых, чтобы быть видимыми.

В 1763 г. ван Левенгук заметил беглые проблески творений еще меньших, чем простейшие. Его описания были неясны, но он был первым в истории, кто увидел объекты, которые позже стали называть бактериями.

Последним значимым открытием эры ван Левенгука стало обнаружение английским ученым Робертом Хуком (1635 – 1703) растительных клеток в пробковой ткани. Роберт Хук был заворожен работой с микроскопом и в 1665 г. опубликовал книгу «Микрография», в которой сделал замечательные рисунки по своим наблюдениям. Термин «клетка» был впервые введен именно им.

Микроскопия продолжала путь через XVIII в., но микроскоп достиг лимита своей эффективности. Лишь в 1773 г., спустя почти сотню лет после открытий ван Левенгука, датский микробиолог Отто Фридрих Мюллер (1730 – 1784) увидел и подробно описал различные по форме бактерии.

Одним из недостатков ранних микроскопов было расщепление в них белого света на разные составляющие. Малые объекты были окружены цветными кругами (явление хроматической аберрации), которые затрудняли рассмотрение деталей. Около 1820 г. были изобретены «ахроматические микроскопы», которые не давали цветных колец. На протяжении XIX в. микроскоп проложил дорогу новым и удивительным областям науки.


Глава 4
  Классификация жизни

Спонтанное размножение

Открытия, сделанные благодаря микроскопу, высветили различия между живой и неживой материей. Вновь стали актуальными вопросы, которые казались закрытыми. Эти вопросы касались возникновения жизни или, по крайней мере, простых ее форм.

В то время как легко увидеть, что человеческие существа и большие животные возникли из материнских организмов либо из яиц, с малыми формами жизни все не так просто. До недавнего времени считалось, что такие существа, как черви и насекомые, вырастают из разлагающегося мяса и прочих «испорченных» субстанций.

Подобное возникновение жизни из неживого называлось спонтанным размножением. Классический пример очевидности существования спонтанных генераций – возникновение личинок из разлагающегося мяса.

Очевидно, что эти червеобразные организмы формируются из «ничего». Одно из исключений – наблюдения Харви, который утверждал в своей книге, что такие организмы возникают из яиц («семян»), которые слишком малы, чтобы их увидеть.

Итальянский врач Франсиско Реди (1626—1697) был впечатлен работами Харви и решил проверить эти предположения. В 1668 г. он приготовил восемь колб с различными видами мяса внутри. Четыре из них запечатал, а четыре оставил на воздухе. Мухи могли лететь только на открытые колбы. Мясо внутри закрытых колб разложилось, но личинки мух не развились. Реди повторил эксперимент, накрыв некоторые из колб газовой тканью. В таком случае в колбы был доступ воздуха. И вновь в этих колбах не развивались личинки.

Итак, личинки возникали не из мяса, а из яиц, отложенных мухами. Концепция спонтанного размножения была поколеблена. Однако наблюдения ван Левенгука над простейшими опять-таки отвергли эксперимент Реди. И мухи, и личинки были достаточно сложными организмами, хотя и более простыми, чем человек. Простейшие, решили современники, могли развиться спонтанно. В экспериментах из питательной среды, поставленной в отстой, вскоре в больших количествах возникали простейшие. Спонтанное размножение стало предметом дискуссии, которая достигла наибольшей остроты в XVIII и XIX вв. То была битва веков: виталисты – против механистов.

Философия витализма началась с немецкого врача Георга Эрнста Сталя (1660 – 1734). Он прославился своей теорией «флогистона», вещества, которое могло гореть, как дерево, и ржаветь, как железо. Сталь полагал, что при горении и ржавении флогистон высвобождается, улетая в атмосферу. Тот факт, что ржавчина прибавляла металлу вес, некоторые объясняли отрицательным весом флогистона. Когда он терялся, металл вырастал в весе. Теория казалась химикам весьма привлекательной и была принята большинством из них.

Однако в 1707 г. Сталь опубликовал книгу, посвященную медицине. Он утверждал, что живые организмы подчинены не физическим законам, а законам совсем иного толка. Оппонировал ему голландский врач Герман Буерхаав (1668 – 1738), наиболее известный в медицинских кругах человек своего времени. В своем анатомическом по теме труде он утверждает, что тело человека подчиняется законам физики и химии.

Для механистов, к которым он принадлежал, законы природы были одинаковы применительно как к живой, так и к неживой природе, служили мостиком между ними. Если бы удалось показать, что микроорганизмы возникают из неживой материи, то эта небольшая пропасть была бы преодолена и мост завершен в своем строительстве.

Виталистическая точка зрения утверждала, что, какими бы простыми ни были формы жизни, между ними и неживой природой – непреодолимая преграда. Спонтанные генерации невозможны.

В XVIII в. сыграли свою роль и религиозные взгляды. Библия описывала спонтанное происхождение видов в нескольких своих пассажах, поэтому многие виталисты (обычно консервативные в религии) сочли необходимым согласиться с возможностью спонтанного воспроизведения жизни.

В 1748 г. английский натуралист Джон Нидхэм (1713—1781), католический священник, опять-таки в опыте с прокипяченным мясом, сделал вывод, что личинки и микроорганизмы возникли из мертвой материи, раз мясо кипяченое (стерилизованное). Он решил, что факт спонтанных генераций доказан.

Скептический взгляд на этот вопрос исповедовал итальянский биолог Ладзаро Спалланцани (1729—1799). Он поместил стерилизованное мясо в колбу и запечатал ее. Микроорганизмы не появлялись. Вопрос казался исчерпанным, однако сторонники спонтанного размножения и здесь нашли лазейку. Они заявили, что в воздухе носится «жизненный принцип», который рождает жизнь в неживом. Он непостижим. Кипячение по Спалланцани убило этот жизненный принцип, заявили они.

Вплоть до окончания следующего века вопрос оставался открытым.

Классификация организмов

Основным аргументом в пользу спонтанных генераций был вопрос классификации; то есть, возможно было либо поместить живое отдельно от неживого, либо оформить классификацию как серию градаций. XVII и XVIII вв. стали свидетелями классификации различных форм, существующих в жизни, и на грани их высветились противоречия еще более сложные, нежели по спонтанным генерациям; противоречия, пик которых пришелся на XIX в.

Для начала формы жизни могут быть разделены на отдельные виды; но сложность состоит в определении термина «вид». В общем, и целом вид – это группа особей, свободно скрещивающихся между собою, которые могут приносить здоровое потомство, в свою очередь способное скрещиваться. Таким образом, все человечество, сколь бы ни были велики различия между отдельными группами, способно свободно скрещиваться и производить относительно здоровые поколения. С другой стороны, слон индийский и слон африканский, сколь бы схожими они ни были, – это отдельные виды, поскольку самец одной группы не может быть скрещен с самкой другой группы.

Аристотель когда-то перечислил пятьсот видов животных, а Теофраст – столько же видов растений. С тех пор в течение двух тысяч лет было открыто бесчисленное множество видов. К 1700 г. были описаны десятки тысяч видов.

Но сколь много ни было бы открыто видов, всегда существовало искушение сгруппировать их в подобные.

Первым сделал попытку в данном направлении английский натуралист Джон Рэй (1628-1705).

В период 1686—1704 гг. он опубликовал трехтомную энциклопедию жизни растений, в которой описал 18 600 видов. В 1693 г. подготовил энциклопедию жизни животных, в которой, однако, было рассмотрено уже меньше видов, но предпринята попытка группировки видов – на основе общности копыт (пальцев) конечностей и зубов.

К примеру, он разделил млекопитающих на две большие группы: с пальцами на конечностях и с копытами. Копытных он подразделил на непарнокопытных (лошадей), парнокопытных (крупный рогатый скот) и трехчленнокопытных (носороги). Парнокопытные, в свою очередь, подразделялись на: жвачных, имеющих постоянные рога (козы); жвачных, с периодически сбрасываемыми рогами (олени); нежвачных (свиньи).

Система классификации Рэя не прижилась, но была взята на вооружение шведским натуралистом Карлом фон Линнеем (1707– 1778), Известным иод латинизированным именем Каролус Линиеус. К тому времени число известных видов живых организмов достигло 70 тысяч; в 1732 г. Линней, пропутешествовав 4600 миль по Северной Скандинавии, обнаружил в этом не самом плодородном регионе 100 новых видов.

В колледже Линней исследовал органы размножения растений, отметил, чем они отличаются от вида к виду, и попытался основать свою систему классификации. В 1735 г. он опубликовал «Систему природы», в которой описывал систему классификации видов – прямую предшественницу системы, принятой сегодня.

Таким образом, была основана наука таксономия, изучение классификации видов живых существ.

Линней систематически сгруппировал подобные виды в роды (от латинского «раса»), порядки, классы. Все известные виды животных были сгруппированы в шесть классов: млекопитающие, птицы, рептилии, рыбы, насекомые и червеобразные. Эти подразделения не столь хороши, как у Аристотеля, но недостатки их легко восполнимы.

Каждому виду, по Линнею, давалось двойное латинское имя; оно состоит: 1) из рода, к которому вид принадлежит; 2) из собственного имени. С тех пор такая биномиальная номенклатура закрепилась; она дала в руки биологам международный язык, предотвращающий недоразумения. Вид человека, живущий ныне на Земле, Линней назвал именем, закрепившимся с тех пор, – Homo sapiens.



Приближение к теории эволюции

По классификации Линнея, группы, широкие и узкие, выглядят как дерево жизни. Случайно ли закрепилась такая классификация?

Могли ли два тесно связанных вида развиться от общего предка и могли ли два тесно связанных предка видов развиться от единого примитивного предка?

Для самого Линнея, религиозно настроенного человека, верящего а слово Библии, само такое предположение было святотатством. Он настаивал на том, что каждый отдельно созданный Божественным Провидением, им же и поддерживался. Его система классификации подтверждала это верование, ибо была основана на внешнем сходстве и не предполагала возможных взаимосвязей.

Однако это не отвратило других ученых от попыток предположить некую эволюцию (это слово стало популярным только в середине XIX в.). По этой теории, один вид развивался от другого; сама классификация отражала естественные взаимосвязи между видами. (В конце жизни и сам Линней стал предполагать, что новые виды могут возникать в результате гибридизации.)

Даже французский натуралист Жорж Луи Леклерк (1707 – 1788), большой консерватор, не мог не дать хода такому предположению.

Леклерку принадлежит сорокатомная энциклопедия по естественной истории, популярная в его время, но разнородная по составу. В ней он указывает, что у многих видов имеются части тела, не используемые ими (рудименты), например два рудиментарных пальца по бокам копыта у свиней. Разве нельзя допустить, что когда-то эти пальцы функционировали? Может быть, человекообразная обезьяна развилась в человека, а осел дегенерировал из лошади?

Английский врач Эразм Дарвин (1731" 1802) писал длинные поэмы на темы ботаники и зоологии. Он принимал как систему Линнея, так и эволюционные изменения. Однако эти взгляды были бы забыты сегодня, если бы не тот факт, что Эразм Дарвин был дедом Чарлза Дарвина, доработавшего эволюционную теорию.

Приход Французской революции год спустя после смерти Леклерка потряс Европу. Старые ценности пошатнулись; стало возможным принятие новых невероятных теорий, эволюционных доктрин. Несколько десятилетий спустя французский натуралист Жан Батист де Мане шевалье де Ламарк (1744 – 1829) вновь занялся теорией эволюции.

Ламарк сгруппировал первые классы Линнея (млекопитающие, птицы, рептилии, рыбы) в большую группу позвоночных, а другие два класса – насекомые и черви – беспозвоночных. Ламарк трудился над тем, чтобы наилучшим образом упорядочить классы и группы. Он, в частности, разделил восьминогих паукообразных и шестиногих насекомых; ракообразных и морских звезд.

В период между 1815-м и 1822 гг. Ламарк опубликовал гигантский семитомный труд «Естественная история беспозвоночных», который лег в основу современной зоологии беспозвоночных. Эта работа заставила его прийти к мысли о возможности эволюции; он опубликовал свои соображения по этому поводу в 1801 г., а затем более детально их проработал в 1809 г. в книге «Зоологическая философия». Ламарк предположил, что используемые органы растут в течение всей жизни, повышая свою эффективность; и дегенерируют, соответственно, если не используются. Эта особенность их развития либо дегенерации, передаваемая потомству, теперь именуется наследственно приобретенными характеристиками.

На примере жирафа он вывел возможность приобретенных, ранее неизвестных характеристик. Постепенно, по мере использования шеи, ног, языка, антилопа все более наращивала их и передавала потомству. В конечном счете антилопа превратилась в жирафа.

Однако в истории существовало одно слабое звено: не только не было очевидным наследование этих характеристик, но все факты говорили против этого.

Как быть с пятнистой шкурой жирафа, которая служит естественным камуфляжем? Как она появилась из однородной шкуры антилопы?

Ламарк умер в нищете, всеми забытый, забыта была и его теория. Но она сослужила службу тем, кто пошел следом. Один тот факт, что эволюция вышла на арену борьбы мнений, уже был значителен. Позже шансов могло и не представиться.


Геология как основа

Наибольшая трудность, которая стояла на пути всех эволюционных теорий, – это ничтожная скорость изменений. В памяти человечества не осталось примеров превращения одного вида в другой. Если такой процесс и имел место, он должен был быть исключительно медлительным, может быть затянувшимся на сотни тысяч лет. Во времена Средневековья и нашего времени европейцы знали только слово Библии и полагали, что нашему миру 6 тысяч лет. Для эволюции это временное пространство ничтожно.

В 1785 г. произошло изменение. Джеймс Хаттон (1726 – 1797), шотландский врач, воспринимавший геологию как хобби, опубликовал свою книгу «Теория происхождения Земли». В ней он привел обзор изменений, которые производят на земной поверхности вода, ветер и прочие климатические факторы. Он также указывал на медлительность, на непрерывность таких процессов, как горообразование, прокладка реками долин и каньонов. Если учитывать скорость прохождения таких изменений, возраст Земли должен был бы насчитывать миллионы лет.

Эта новая концепция возраста Земли поначалу встретила крайне враждебный прием, однако вскоре именно она объяснила нахождение во все большем масштабе ископаемых останков животных, получивших тогда большую известность.

Казалось невероятным, чтобы каменистые формы могли скопировать формы живые случайно; объяснение могло быть одно: такие животные когда-то существовали. Мно– гие сразу предположили, что эти существа были уничтожены Всемирным потопом. Но если Земля так стара, как предположил Хаттон, останки могли быть исключительно давнего возраста, и костный материал в них постепенно заменился каменистым.

Новый взгляд на проблему пришел с Уильямом Смитом (1769 – 1839), английским геологом. Он прокладывал каналы (которые тогда строили в массе), а следовательно, имел возможности для раскопок. Он ввел латинский термин <<страта>> для ровных слоев, которыми ложились разные типы пород. Он отмечал, что каждый слой имел свою собственную характерную форму ископаемых биологических остатков, неповторяемую в других слоях. Не важно, какими складками ложился слой, но он удерживал свои характерные ископаемые остатки, даже исчезая на некоторое время из виду и появляясь в другом месте.

Смит научился идентифицировать название и приблизительный возраст слоев по биологическому содержимому.

Если его воззрения верны, то можно предположить, что геологические слои лежат в таком порядке, как сформировывались, и чем глубже залегает слой, тем он древнее. И по возрасту слоя можно определить возраст ископаемого животного.

Ископаемые животные привлекли внимание французского биолога Жоржа Леопольда Кювье (1769—1832). Кювье изучил анатомию ископаемых животных и произвел их сравнение, систематически отмечая отличия и сходство. Тем самым он основал сравнительную анатомию.

Эти исследования дали возможность Кювье изучить необходимые взаимосвязи частей тела так, чтобы из факта присутствия одних костей можно было вывести форму других: тип мускулатуры и прочее. В конечном итоге он смог реконструировать приблизительную форму, размеры и внешний вид ископаемого животного.

Кажется вполне естественным интерес анатома к классификации видов. Кювье расширил и дополнил систему Линнея, сгруппировав классы последнего в еще большие группы. Одну из групп он назвал, по Ламарку, позвоночные. Не интересуясь беспозвоночными существами, Кювье разделил их всех на три большие группы: членистоногие (насекомые и ракообразные); моллюски и лучевые (прочие).

Все это – большие группы, именуемые теперь отрядами. В наше время к выделенным Кювье прибавились три дюжины других отрядов – как растений, так и животных. К позвоночным теперь отнесли еще примитивных животных с хордой вместо костной ткани, так называемых хордовых.

И вновь, из-за интереса к сравнительной анатомии, Кювье основал свою собственную систему классификации на структурах и их Функциях, а не на поверхностных сходных чертах, как когда-то Линней. Кювье создавал свою систему классификации применительно к животным. В 1810 г. швейцарский ботаник Агустин Пирамус де Кандоле (1778 – 1841) применил ее к растениям.

К ископаемым Кювье применил свою систему классификации, аналогичную ныне существующей. Таким образом, Кювье стал первопроходцем в науке палеонтологии – изучении древних форм жизни.

Ископаемые животные, по Кювье, наглядно представляют собой эволюцию животного мира. Чем древнее ископаемое, тем более оно отличается от существующих форм жизни, и некоторые можно расположить в порядке, демонстрирующем постепенное изменение внешних форм в природе.

Однако сам Кювье не принимал возможности эволюции. Поэтому он разработал теорию катастроф, которые периодически потрясали Землю и опустошали видовое разнообразие. После каждой такой катастрофы появлялись новые формы жизни, совершенно отличные от прежних. Современные формы (включая человека) появились после последней катастрофы. С этой точки зрения можно было примирить новые открытия и библейскую историю.

Кювье считал, что для объяснения известных ископаемых форм должно было про~ изойти четыре земных катастрофы. Но появлялись все новые находки, и их уже не могли объяснить четырьмя катастрофами. Последователи Кювье насчитывали уже 27 катастроф.

Теория катастроф не состыковывалась с «униформитаризмом» Хаттона. В 1830 г. шотландский геолог Чарлз Лайель начал публикацию трехтомного труда «Принципы геологии», в котором популяризировал теорию Хаттона и постулировал, что Земля проходила только постепенные и некатастрофичные изменения. В самом деле, некоторые виды неизменными дошли до нас из глубины веков, а некоторые находились в геологических слоях, принадлежащих нескольким периодам.

Катастрофизм изжил сам себя. Он был последним оплотом в битве против теории эволюции, и, когда он пал, возникла необходимость в концепции эволюции. К середине XIX в. созрели условия для формулирования такой концепции.


Глава 5
Составные части организмов и клетки

Газы и жизнь

В то время как виды на протяжении их изучения постоянно подвергались классификации, наука о жизни получила новое и исключительно плодотворное направление. Химия вступила в свой революционный период, и химики начали применять технологии к живым организмам так же, как и к неживым системам. То, что эти понятия находят практическое применение, доказала теория пищеварения.

Переработка пищи животными организмами – процесс, относительно открытый для исследования. Он происходит не внутри самих животных тканей, а в пищеварительных каналах, выходящих во внешний мир. Этот процесс проходит непосредственно через ротовую полость. В XVII в. горячо обсуждался вопрос о том, является ли пищеварение физическим процессом (как полагал Борелли), при котором желудок перемалывает пищу, или химическим, при котором желудок изменяет ее химически посредством желудочных соков (как полагал Сильвиус).

Французский физиолог Репе Антуан де Реомюр (1683—1757) исследовал способы тестирования. В 1752 г. он провел эксперимент: поместил сырое мясо в малый металлический цилиндр, открытый с обоих концов, но с защитной металлической сеткой (мясо не могло вывалиться), и скормил цилиндр коршуну. Через металлическую сетку мог проникать желудочный сок. Металл цилиндра защищал мясо от любого механического воздействия. Обычно коршуны отрыгивают любое инородное тело, оказавшееся в пищеводе, аналогичным образом поступил и подопытный коршун. При анализе мясо, находившееся в цилиндре, оказалось частично разложившимся.

Реомюр не остановился на достигнутом: он скормил коршуну губку, из которой после отрыгивания были выделены пропитавшие ее желудочные соки. Их смешали с мясом. Мясо медленно, но разложилось под действием соков. Таким образом, спорный вопрос был прояснен. Пищеварение было объявлено процессом химическим, а значение в жизни химии сильно возросло в глазах человечества.

В XVIII в. ван Хельмонт начал интенсивно изучать газы. Необходимость изучения Давно назрела. Английский ботаник и химик Стивен Хейлз (1677 – 1761) стал одним из основных авторитетных исследователей в данной области. В 1727 г. он опубликовал книгу, в которой описывал эксперименты по измерению скорости роста растения, а также давления соков в тканях. Он стал одним из основателей физиологии растений. Он экспериментировал с разнообразными газами и первым выяснил, что один из них, двуокись углерода, вносит большой вклад в питание растений. В этом он дополнил точку зрения ван Хельмонта о составе тканей растений.

Следующий шаг был предпринят английским химиком Джозефом Пристли (1733– 1804) почти сто лет спустя. В 1774 г. он открыл газ, названный кислородом и обнаружил экспериментально, что им приятно и легко дышится и что, в частности, подопытные мыши исключительно резвы, будучи помещены в кислород под колокол. Далее последовало открытие, что растения увеличивают содержание кислорода в воздухе. Голландский физиолог Жан Ингенхуз (1730—1799) дополнил его открытием, что растения производят кислород и поглощают углекислый газ только на свету.

Величайшим химиком того прославленного века стал француз Антуан Лоран Лавуазье (1743 – 1794). Он подчеркивал важность точных измерений и использовал их для разработки теории горения, которой с тех пор пользуются в химии. По этой теории, горение – это процесс химического соединения горючего материала с кислородом воздуха. Он также доказал состав воздуха: кроме кислорода, в него в основном входит азот – газ, не поддерживающий горения.

«Новая химия» Лавуазье положила начало практическому приложению химии. Когда под колоколом горит свеча, потребляется кислород воздуха и возрастает содержание углекислого газа. Последнее вещество образуется посредством соединения кислорода с углеродом. Как только содержание кислорода под колоколом падает до критически низкого, свеча гаснет.

Аналогична ситуация с животной жизнью. Мышь, помещенная под колпак, потребляет кислород и производит углекислый газ; последний образуется в результате соединения углерода тканей с кислородом. Поскольку содержание кислорода внутри колпака падает, мышь погибает от удушья. Если оценить эту ситуацию в целом, то растения потребляют углекислый газ и производят кислород, а животные, наоборот, потребляют кислород и производят углекислый газ.

Таким образом, вместе растения и животные поддерживают химическое равновесие, и в обозримом будущем соотношение в атмосфере кислорода (21 %) и углекислого газа (0,03 %) останется стабильным.

Поскольку свеча и животное воздействовали на суммарную атмосферу под колпаком одинаково, Лавуазье резонно предположил, что дыхание является формой горения. Таким образом, когда потребляется определенное количество кислорода, выделяется определенное количество тепла – будь то свеча или мышь. Хотя измерения были, принимая во внимание возможности того века, достаточно грубыми и приблизительными, но они подтверждали теорию.

Тем самым был нанесен мощный удар по механистическому пониманию жизни: выяснилось, что в живой и неживой природе идут одни и те же химические процессы. Однако тем очевиднее становилось, что живой и неживой природой управляют одни и те же законы, на чем настаивали сторонники механистической теории.

Точка зрения Лавуазье укрепилась по мере развития физики в первой половине XIX в. В то время тепло и тепловая теория исследовались несколькими учеными, чей интерес был «подогрет» растущим значением парового генератора. Тепло можно было заставить совершать работу, с ним связаны и другие физические явления: например, падение тел, течение воды, движение воздуха, свет, электричество, магнетизм и т. д. В 1807 г. английский физик Томас Янг (1773 – 1829) предложил для представления обо всех этих явлениях термин «энергия». По-гречески это слово означает «работа, совершаемая изнутри».

Физики первой половины XIX в. занялись изучением того, каким образом одна форма энергии может трансформироваться в другую; производили точные измерения таких изменений. К 1840-м годам по меньшей мере трое ученых выдвинули концепцию «сохранения энергии». Это были: англичанин Джеймс Прескотт Джоуль (1818 – 1889) и немцы Юлиус Роберт фон Мейер (1814 – 1878) и Герман Людвиг Фердинанд фон Гельмгольц (1821 – 1894). В соответствии с этой концепцией, одна форма энергии свободно переходит в другую; однако общее ее количество в процессе перехода нельзя ни увеличить, ни уменьшить.

Для такого общего закона, основанного на широком разнообразии точных измерений, было бы естественным базироваться как на примерах живой природы, так и неживой. Тот простой факт, что ни одно живое существо не может поддерживать жизни, не черная энергию из пищи, доказывал, что энергия не получается «из ничего». Растения не едят и не дышат аналогично животным, однако они черпают энергию из света.

Именно Мейер установил, что источником разных форм энергии на Земле является радиация и тепло Солнца; аналогично растениям, потребляющим энергию Солнца непосредственно, животные организмы потребляют ее же в виде пищи. Прямым источником энергии для растений и – через растения – для животных является энергия Солнца.

Эти смутные догадки росли в числе и утверждались, пока во второй половине XIX в. не было доказано, что закон сохранения энергии так же строго приложим к живой природе, как и к неживой.

Органические компоненты

Виталистическая позиция все еще оставалась сильной. Будь необходимо признать, что закон сохранения энергии остается в силе как для живых, так и для неживых систем либо что все организмы потребляют кислород и производят углекислый газ одним и тем же способом, – то это и было бы единственным обобщением. Однако внутри этого обобщения оставались бы детали во всех своих противоречиях.

И все же разве не может быть, чтобы живые организмы, хотя и состоящие из материи, были бы сделаны из материи иного рода, нежели неживой мир? На этот вопрос даже не нужно отвечать.

Такие вещества, которые содержатся в почве, море, воздухе, тверды, стабильны и неизменны. Вода, будучи подогретой, закипает и испаряется, но пар вновь можно остудить и превратить в воду. И железо, и соль можно перевести в жидкое состояние, как и вновь сделать твердыми, В то же время вещества, получаемые из живых организмов – растений, – например, сахар, бумага, растительное масло, – характеризуются теми же непрочностью и нежностью консистенции, которыми обладали их содержащие организмы. При нагревании они дымятся, сгорают и тем самым претерпевают необратимые изменения; дым и пепел бумаги не обратятся в бумагу вновь. Значит, можно предположить, что мы имеем дело с двумя различными вариациями материи.

Шведский химик Йене Якоб Берцелиус (1779 —1848) предложил в 1807 г. вещества, получаемые из живых (либо когда-то бывших живыми) организмов, называть «органическими веществами», а иные – «неорганическими веществами». Он предположил, что, в то время как возможно конвертировать (и достаточно легко) органические вещества в неорганические, обратное изменение невозможно. Чтобы это изменение произошло, должна присутствовать некая живая сила, которой характеризуется лишь живая материя.

Такая точка зрения, однако, долго не просуществовала. В 1828 г. германский химик Фридрих Веллер (1800 – 1882) при исследовании цианидов нагревал цианат аммония, считавшийся неорганическим компонентом, и обнаружил, к своему изумлению, в продукте реакции кристаллы мочевины. Мочевина была главным твердым составляющим человеческой мочи и определенно органическим компонентом.

Это открытие воодушевило других ученых на то, чтобы синтезировать органические вещества из неорганических, и вскоре пришел успех. Французский химик Пьер Эжен Марселей Бертло (1827 – 1907) окончательно разрушил стену между органическими и неорганическими веществами. Он синтезировал некоторые хорошо известные органические вещества, например метиловый спирт, этиловый спирт, метан, бензол, ацетилен, из чисто неорганических веществ.

Химические формулы трех классов органических веществ, гидрокарбонат, липид, протеин.

С развитием соответствующих аналитических методик в первых декадах XIX в. химики обнаружили, что органические вещества состоят главным образом из углерода, водорода, кислорода и азота. Вскоре они выявили и последовательность сочетания атомов, при котором эти вещества приобретают свойства органической субстанции.


    Ваша оценка произведения:

Популярные книги за неделю