355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Царство Солнца. От Птолемея до Эйнштейна » Текст книги (страница 10)
Царство Солнца. От Птолемея до Эйнштейна
  • Текст добавлен: 9 октября 2016, 15:20

Текст книги "Царство Солнца. От Птолемея до Эйнштейна"


Автор книги: Айзек Азимов



сообщить о нарушении

Текущая страница: 10 (всего у книги 11 страниц)

ПОСЛЕДНЯЯ ПЛАНЕТА

Однако астрономов не удовлетворял  поиск одной только мелочи. Сатурн не был концом Солнечной системы, Уран – тоже. Тогда почему таковым считать Нептун?  Разве за Нептуном не может оказаться еще  одной планеты?

Если так, то найти ее будет трудно. Уран невооруженным глазом виден. Нептун хотя и не виден невооруженным глазом, но может быть найден с помощью небольшого  телескопа. Однако планета, расположенная дальше Нептуна, должна оказаться настолько  тусклой, что затеряется среди миллионов звезд. Кроме того, она будет настолько далекой, а ее передвижение – таким медленным, что это движение трудно будет обнаружить.

Начиная с 1905 г. американский астроном Персиваль Ловелл (правильнее – Лоуэлл) пытался сделать то же, что и Леверье. После долгих наблюдений орбита Урана все еще  выказывала небольшие отклонения, которые нельзя было объяснить притяжением Неитуна. Эти отклонения были в 60 раз меньшими, чем те, которые привели к открытию  Нептуна. Тем не менее Ловелл взялся решать эту проблему. Он использовал эти отклонения для того, чтобы вычислить возможную  орбиту и расположение планеты дальше Нептуна, которую он назвал Планетой X. Он  опубликовал свои расчеты в 1915 г., но похоже, они никого не заинтересовали.

Однако Ловелл был богатым бостонским аристократом и владельцем собственной  обсерватории (Ловелловская обсерватория) в Аризоне, так что начал поиски сам. Он  изучал многочисленные фотографии  интересовавшего его участка небосвода, которые делались в прошлом, и делал дополнительные снимки. Успеха он не добился и в 1916 г. умер. Какое-то время казалось, что интерес к Планете X умер вместе с ним, но в конце  концов его последователи из обсерватории Ловелла решили продолжить его дело.

В обсерватории установили новый  фототелескоп (его купил А. Лоренс Ловелл, брат Персиваля). Двадцатитрехлетний Клайд Томбо поступил на работу в обсерваторию в 1929 г. и возобновил поиски. Он был  слишком беден, чтобы учиться в университете, но был очарован астрономией и много работал с 9-дюймовым телескопом, который сам  сделал из деталей старых механизмов,  валявшихся на отцовской ферме. И вот теперь он смог работать на чудесном  профессиональном телескопе!

Он действовал так: делал фотографии  одного и того же участка неба в два разных дня. На одном снимке могло оказаться от 50 000 до 400 000 звезд. Несмотря на все это множество звезд, два снимка одного и того же участка должны были оказаться  идентичными в том случае, если на них были одни только звезды. Два снимка по очереди  проецируются на экран, и при этом ни одна из звезд не движется. Это выглядит как одна фотография. Однако если одна из «звезд» на самом деле – планета, то в течение  интервала между фотографированием она сдвинется на фоне звезд. На двух снимках она будет занимать разное место и при  смене снимков начнет двигаться туда и  обратно, создавая быстрое и заметное мерцание.

18 февраля 1930 г. после почти целого года кропотливой сверки фотографий Томбо обнаружил мерцавшую звезду. По тому, насколько медленно она двигалась на фоне звезд, он был уверен, что она расположена дальше Нептуна. Новую планету тщательно наблюдали в течение месяца, после чего объявили о сделанном открытии. Датой объявления было 13 марта 1930 г.,  годовщина смерти Персиваля Ловелла. Томбо  вознаградили стипендией для обучения в  Канзасском университете, так что он наконец смог получить высшее образование.


Для новой планеты было предложено  название Плутон (рассказывают, что это  сделала одиннадцатилетняя девочка), и его приняли. Это удачное название в двух отношениях. Во-первых, Плутон был богом подземного мира, а ни одна планета не находится  настолько далеко от света Солнца, в такой  глубокой тьме, как Плутон. Во-вторых, первые две буквы его названия – это инициалы Персиваля Ловелла.

Плутон оказался очень странной планетой. Он находится настолько далеко, что  наблюдать его трудно, так что астрономам не много удалось о нем узнать. Однако он кажется  намного меньше, чем остальные внешние  планеты. Возможно, Плутон такой же небольшой, как Земля, или даже меньше. Если это так, то на самом деле он – не та планета, положение которой вычислил Ловелл, и его открытие стало чисто случайным совпадением; орбита Плутона несколько меньше той, которую  Ловелл рассчитал для Планеты X.

Среди больших планет Плутон имеет  самый большой наклон орбиты, которая  также имеет самый большой эксцентриситет. В афелии Плутон находится от Солнца на расстоянии 8220 миллионов километров, почти вдвое дальше, чем Нептун. Однако в перигелии он всего в 4979 миллионах  километров от Солнца, и тогда он примерно на 5 миллионов километров ближе к Солнцу, чем Нептун! Однако из-за наклона орбиты Плутона он на самом деле не пересекает орбиту Нептуна, и обе планеты никогда не оказываются близкими друг к другу.  Опасности столкновения нет.

Когда Плутон открыли, он» двигался но направлению к перигелию. Он это делает и сейчас. К 1969 г. Плутон оказался к  Солнцу ближе, чем Нептун, и с этого момента до 2009 г. он не будет самой отдаленной от Солнца планетой – ею будет Нептун.

Кстати, среднее расстояние Плутона от Солнца укладывается в правило Тициуса – Боде для планеты позади Урана. Число из последовательности Тициуса – 388, а  расстояние Плутона – 395. Однако тогда для Нептуна в последовательности места не  оказывается. Как бы то ни было, правило  Тициуса—Боде уже не принимают слишком серьезно, так что это не имеет значения. Это правило сыграло свою роль, оказав помощь в открытии малых планет и Нептуна. Теперь мы можем оставить его в покое.

Открытие привело Солнечную систему к тому положению, которое нам известно  сейчас. В ее входит: Солнце, 9 крупных планет, 31 спутник и около 44 000 малых планет.

Помимо этого, существует некоторое  количество комет – возможно, очень  большое количество. Одна современная теория говорит о том, что вокруг Солнца  вращается громадное облако комет, на расстоянии в тысячу раз большем, чем расстояние  Плутона от Солнца. В этом облаке может  содержаться до ста миллиардов комет.

Однако кометы – это такие жидкие  полупрозрачные штуки, что даже такое громадное их число, вместе взятое, не содержало бы в себе столько вещества, сколько содержится в нашей Луне. Однако кометы могут занимать немало места, потому что разреженный газ некоторых из них занимает даже больший объем, чем само Солнце. Единственной  твердой частью кометы является ее ядро, а оно имеет размер планетоида. Ядро кометы Галлея, вероятно, имеет диаметр не более  двадцати километров.

Время от времени слабое притяжение  одной из планет или даже одной из наиболее близких звезд может возмутить орбиту  какой-либо кометы и замедлить ее движение настолько, что она начнет падать по  направлению к Солнцу и понесется мимо планет, обогнет Солнце и, возможно, навсегда  покинет нашу систему. Или по пути к Солнцу, или обратно комета может еще сильнее  подпасть под влияние гравитации одной из  планет, мимо которых будет пролетать. Тогда ее могут поймать и сделать постоянным и близким членом Солнечной системы, как это стало с кометой Галлея. На самом деле,  оказываясь рядом с планетами, кометы долго не живут. Они слишком нежные, чтобы  выдерживать гравитационное притяжение  различных тел системы дольше, чем несколько тысяч лет. Несколько комет даже распались прямо в тот момент, когда за ними  наблюдали астрономы.

Новые кометы обнаруживают каждый год. Как правило, они настолько тусклые, что их можно увидеть только в телескоп. Их называют в честь тех, кто их открыл, и они также получают номер в соответствии с  годом, в который достигают перигелия, и  числом комет, открытых в тот год.

И наконец, существуют метеоры, которые заполняют пространство мелкой и очень редкой пылью. Они могут отчасти являться обломками комет, а отчасти – пылью,  оставшейся после образования планет.  Подавляющее большинство таких метеоров  микроскопически малы.

Примерно 100 миллионов из них  ежедневно падают на Землю. Почти все они  сгорают в атмосфере, не достигнув и ста километров до поверхности Земли. Более крупные оставляют за собой огненный след, благодаря которому их назвали падающими звездами (это было до того, как узнали их подлинную природу).

Самые крупные даже достигают  поверхности Земли, не успев полностью  испариться. Твердое вещество, падающее на Землю, называют метеоритом. На Землю ежегодно падает 150 – 600 метеоритов, и очень малое их число может оказаться довольно  крупным, В Аризоне есть кратер с диаметром примерно около километра, который,  вероятно, был образован метеоритом, упавшим десять тысяч лет назад. Есть остатки даже более крупных кратеров, созданных более давними падениями. В двадцатом веке, в 1907 г., великое падение произошло в  Сибири. К счастью, не зарегистрировано падений крупных метеоритов на города, хотя  существует небольшая вероятность того, что  когда-нибудь это произойдет.

Ну, можно ли еще что-то рассказать о  нашей Солнечной системе? Да, осталась еще одна история. Не об объекте нашей  Солнечной системе, а о том, чего в системе нет, о планете, которой не было.


Глава 10
ЗА НЬЮТОНОМ

ПЛАНЕТА, КОТОРОЙ НЕ БЫЛО

Дело в том, что, несмотря на все победы ньютоновского закона всемирного тяготения, существовало одно планетное движение,  которого он объяснить не мог.

В начале главы 7 я упомянул о том, что Эйлер использовал силы гравитации для того, чтобы объяснить, почему положение перигея Луны медленно вращается вокруг Земли. Гравитация должна была также объяснить и то, что положение перигелия планеты вращается вокруг Солнца, а также скорость этого вращения.

Так случилось, что Меркурий имеет  орбиту с большим эксцентриситетом и самый быстро движущийся перигелий. В афелии, когда Меркурий отстоит от Солнца дальше всего, до него 78,3 миллиона километров. В перигелии, когда он ближе всего к Солнцу, расстояние сокращается до 51,3 миллиона километров. Местоположение перигелия в пространстве постоянно смещается, и это смещение вперед можно объяснить за счет гравитационного воздействия ближайших планет, таких, как Венера и Земля.

Однако так можно было объяснить  далеко не все движение! Как астрономы ни  старались, всегда оставалось еще какое-то смещение вперед, которое объяснить не  получалось.

В 1845 г. Леверье (которому вскоре  предстояло открыть Нептун) обнаружил это,  пытаясь составить таблицы для вычисления движения Меркурия. Он рассчитал, что за 100 лет перигелий сместился вперед на 40 секунд больше, чем ему следовало бы. Это не такое уж большое расхождение.  Чтобы было понятно, насколько оно невелико, скажу: ширина Солнца или Луны, видимых с Земли, составляет полных 1800 секунд. Следовательно, потребовалось бы не меньше 4500 лет, чтобы перигелий Меркурия  отошел от рассчитанного положения на  видимую ширину Солнца или Луны.

Однако астрономы привыкли получать очень важные результаты путем объяснения подобных небольших несовпадений. Когда Кеплер попытался подогнать круговые  орбиты к позициям Марса, определенным Тихо Браге, ему это почти удалось. Его подгонка никогда не давала расхождения более 500 секунд. Однако 500 секунд  оказалось достаточно, чтобы он попробовал вместо этого воспользоваться  эллиптическими орбитами. Перемещение Урана отличалось от теории менее чем на 100 секунд, и этого оказалось достаточно, чтобы открыть Нептун. Ловелл даже попытался вычислить положение Плутона по отклонениям,  составлявшим менее 2 секунд.

Конечно же можно и нужно было делать что-то с этими 40 секундами в столетие, которые были лишними в движении  Меркурия.

Леверье, который к этому времени  справился с одним несовпадением, открыв новую планету, приготовился решить эту задачу таким же образом. В конце концов, за  Меркурием могла оказаться неизвестная  планета – так же, как она оказалась за Ураном. Вероятно, она окажется еще меньше  Меркурия и будет находиться настолько близко к Солнцу, что обнаружить ее окажется  крайне сложно: ведь планета всегда будет  теряться в свете Солнца.

Однако если она действительно там  находится, то ее гравитация могла бы объяснить эти 40 секунд за век. Леверье решил, что для этого нужна была бы планета с диаметром приблизительно в 1800 километров, которая бы вращалась на расстоянии 34 миллионов километров от Солнца. Для этой планеты даже предложили название – Вулкан, по имени римского бога огня. Хорошее название, поскольку на таком расстоянии от Солнца планета была бы раскалена докрасна.

Астрономы (особенно  астрономы-любители, жаждавшие славы, которую им принесло бы открытие планеты) тут же начали охоту. Наилучшей возможностью  обнаружить эту планету были бы наблюдения за окрестностями Солнца во время полного затмения. Еще одной хорошей  возможностью было бы наблюдение за самим Солнцем, чтобы увидеть темное тело, которое  пересекло бы его диск при прохождении – тело, которое не было бы Меркурием, Венерой или солнечным пятном.

И действительно – в течение следующих десяти —двадцати лет поступило несколько объявлений об открытии Вулкана. По  правде говоря, во время затмения 1878 г.  сообщалось не об одной, а о двух планетах дальше орбиты Меркурия. Однако все эти сообщения оказались ложными. Другим  астрономам не удавалось найти  подтверждения этим сведениям.

И до нашего времени планету внутри  орбиты Меркурия обнаружить не удалось.  Конечно, теперь нам известно и о малой  планете Икар, которая подходит к Солнцу в перигелии на 30 миллионов километров, но она такая крошечная, что не могла бы  оказать заметного влияния на Меркурий.

Конечно, можно было бы предположить, что невозможность обнаружить Вулкан еще не говорит о том, что его там нет. Однако  астрономы довольно скоро удостоверились в том, что его нет. Используя гравитационную математику, можно показать, что если бы Вулкан существовал (как это утверждал Леверье), то он вызывал бы возмущения в  движении Венеры и Земли, которых просто нет.

Дополнительному движению перигелия Меркурия пытались найти и другие  объяснения. Например, кольцо метеоров вокруг Солнца или особое движение Солнца. Но ничего не получалось. Все, что  действовало бы на перигелий Меркурия, должно было действовать и на Венеру с Землей. А так это нечто (чем бы оно ни было)  влияло только на Меркурий, хотя закон  всемирного тяготения утверждал, что такое  невозможно.

К 1900 г. единственным объяснением  стало то, что ньютоновский закон всемирного тяготения все-таки не работает безупречно.


ИСКРИВЛЕНИЕ ПРОСТРАНСТВА

Но 1900 г. стал годом научной революции, еще более значительной, чем та, что  произошла в 1600-х гг. во времена Коперника и  Галилея. Ученые обнаружили, что атомы,  считавшиеся самыми маленькими частицами, можно разбить на гораздо более мелкие элементы. Разрабатывались странные понятия в  области энергии. Оказывалось, что энергия  существует в виде маленьких порций, называемых квантами, точно так же, как материя состоит из атомов.

И что важнее всего, два американских физика, Альберт Майкельсон и Э.У. Морли, в 1887 г. попытались измерить скорость света, когда свет двигался в разных  направлениях. С помощью очень чуткого  прибора, называемого интерферометром, эти двое измерили скорость света, когда он двигался в направлении движения Земли и поперек этого направления. Они надеялись, что по разнице в этих скоростях смогут определить скорость, с которой движется Земля.

Видите ли, все были согласны с тем, что Земля движется вокруг Солнца с  определенной скоростью, 32 километра в секунду.  Однако и само Солнце не стоит на месте. Все звезды движутся, хотя они расположены  настолько далеко, что изменения их  положения нельзя различить невооруженным  глазом, пока не пройдет несколько веков (вот почему их всегда и считали «неподвижными звездами»).

Солнце тоже движется, вращаясь вокруг некоторой точки в Млечном Пути и тратя на один оборот миллионы лет. Эта центральная точка Млечного Пути тоже движется.

Тогда встает вопрос: есть ли во  Вселенной что-то, что не двигалось бы, оставалось бы абсолютно неподвижным? Если это так, то скорость Земли можно было бы сравнить с ним.

В 1887 г. считалось, что вся Вселенная заполнена веществом, называемым «эфир». Именно эфир переносил световые волны, магнитные силы и тому подобное. Более того, предполагалось, что он совершенно неподвижен. Майкельсон и Морли надеялись, что, обнаружив различие в скорости света, когда она складывается с видимой  скоростью Земли и направлена перпендикулярно к ее движению, они измерят  «истинное»  движение.

К изумлению Майкельсона и Морли,  скорость света оказалась одинаковой, вне  зависимости от направления. Они повторили этот эксперимент, как это сделали и другие люди, но результат всегда оставался таким. Скорость света (в вакууме) не менялась,  независимо от движения объекта, который  испускал свет.

Это истолковали так, что эфира не  существует и во Вселенной нет ничего, что  можно было бы считать неподвижным. Однако наличие Вселенной, в которой все движется и ничто не находится «в состоянии покоя», с которым можно сравнивать все движение, опрокидывало некие основополагающие  понятия, которые ученые имели со времени Ньютона.

В 1905 г. двадцатишестилетний немецкий математик но имени Альберт Эйнштейн,  работавший в тот момент в патентном  ведомстве в Швейцарии, опубликовал статью, в которой выдвинул то, что называют  специальной теорией относительности. В ней он попытался разработать систему вселенной, где свет в вакууме всегда двигался с  одинаковой скоростью. Оказалось, что такая вселенная должна сильно отличаться от той, которую знали ученые.

Например, длина объекта изменялась в  соответствии с его скоростью, и то же  происходило с количеством материи в нем. В старой вселенной системы Ньютона длина и  количество материи никак не были связаны со  скоростью. Опять же, во вселенной Эйнштейна материя была эквивалентом энергии, а  энергия – материи, в соответствии с очень  простой формулой; одно могло превращаться в другое. В системе Ньютона материя и энергия не были связаны.

Ну, так какая же система правильная? Обе они не могли быть правильными.  Проблема в том, что это трудно определить. При обычных условиях система Эйнштейна дает ту же картину, что и система Ньютона.  Например, при обычных скоростях, скажем, до полутора тысяч километров в секунду,  изменения длины или количества материи  настолько малы, что их невозможно  обнаружить. При обычных условиях столь малая часть материи переходит в энергию или  наоборот, что заметить нельзя.

Только при экстремальных условиях, при скоростях в сотни тысяч километров в  секунду или при радиоактивном распаде,  появляется огромное различие между системами  Эйнштейна и Ньютона, и тогда мы можем вынести решение.

Например, в 1915 г. Эйнштейн  опубликовал еще одну статью, где была выдвинута общая теория относительности, в которой он применил новые принципы Вселенной к гравитации. В соответствии с теорией  Эйнштейна, гравитация – это не сила, которая удерживает объекты. На самом деле  оказывалось, что она появлялась потому, что пространство рядом с массивным телом  искривлялось. Чем больше тело, тем более сильным было искривление.

Небольшое скопление материи,  приближающееся к более крупному телу, просто следует по изгибу и вращается вокруг него. Это вполне естественная вещь: так сани, быстро мчащиеся с горы и  подкатывающиеся к крутому склону, естественно  взбираются на этот склон, начиная двигаться по изогнутой траектории.

Конечно, искривление пространства  действует так, что движение планет  оказывается приблизительно таким, как если бы между ними и Солнцем действительно  существовали гравитационные силы, как это предположил Ньютон. Разница становится заметной только при экстремальных  условиях.

Одним из экстремальных условий  можно назвать ситуацию, когда маленькое  тело оказывается очень близко от крупного. В нашей Солнечной системе Меркурий – единственная планета, которая находится достаточно близко от Солнца, так что  условия становятся достаточно экстремальными, чтобы продемонстрировать различие между системами Ньютона и Эйнштейна. Это  добавочное перемещение перигелия в 40  секунд за сто лет не может быть объяснено с помощью гравитационной математики, зато его можно точно объяснить с помощью  релятивистской механики.


РЕШАЮЩЕЕ ЗАТМЕНИЕ

Таким образом, движение перигелия Меркурия было объяснено – при условии, что теория Эйнштейна верна. Но была ли она верна? Астрономам не хотелось без  особых оснований отказываться от идей  Ньютона.

В конце концов, Эйнштейн заранее знал о наличии 40-секундного несовпадения  движения Меркурия, накапливающегося за сто лет. Естественно, он подогнал свою теорию так, чтобы это объяснить. Значит, одного этого было недостаточно, чтобы доказать правильность его теории.

Однако предположим, что удалось бы найти еще какое-то условие, которые  окажется достаточно экстремальным, чтобы продемонстрировать различие между  системами Эйнштейна и Ньютона, причем такое, которое ученые еще не исследовали. Тогда обе системы будут работать, так сказать, вслепую. Затем можно провести  необходимые наблюдения и прийти к выводу  относительно обеих систем.

Например, если пространство искривлено, как это утверждал Эйнштейн, то свет должен следовать но кривой, точно так же, как и  планеты. Поскольку свет движется чрезвычайно быстро, то он изгибается очень слабо, но  Эйнштейн предсказал, что при экстремальных условиях, если бы свет проходил очень  близко от Солнца, его искривление станет  достаточно большим, чтобы его можно было измерить.

В то же время, согласно Ньютону,  гравитация воздействует только на материю. Свет гравитации не подвержен (луч  фонарика легко уходит вверх, против  направления притяжения Земли), так что луч света не подвергнется воздействию гравитации и будет продолжать движение но идеально прямому пути, как бы близко от Солнца он ни проходил.

Итак, никому не приходило в голову  проверить, не искривляется ли свет, проходя мимо Солнца, так что наблюдений этого  явления не существовало.

Однако Эйнштейн выдвинул свою  общую теорию относительности в 1915 г.  Европа тогда была охвачена войной, и науке пришлось подождать.

В 1918 г. война закончилась, а в 1919 г. должно было произойти полное затмение, которое можно было наблюдать с острова Принсипи в Западной Африке.  Международный характер науки таков, что никого не удивило, что англичане возьмут на себя лидерство в проверке теории немца после того, как Англия и Германия в течение четырех лет вели кровопролитную войну.

Королевское астрономическое общество Англии организовало экспедицию на  Принсипи специально для того, чтобы проверить  системы Эйнштейна и Ньютона. Во время затмения свет Солнца на несколько минут будет закрыт. В течение этих немногих минут станут видны звезды по соседству с Солнцем. Крошечный луч света от каждой из этих звезд сможет достигнуть Земли, только пройдя вблизи от Солнца. Если верна теория  Ньютона, эти звезды окажутся в тех же местах, где они обычно бывают ночью, когда их свет не проходит рядом с Солнцем. Если верна  теория Эйнштейна, то все звезды окажутся чуть в стороне от своего обычного положения из– за искривления света. В каждом случае  звезда окажется чуть дальше от Солнца, чем ей следовало бы быть. Максимальное смещение составит примерно 1¾ дуги. Это крошечная величина, но она вполне поддается  измерению.

Это затмение стало, наверное, самым  важным в истории астрономии. Сделанные  фотографии спешно доставили в Англию.  Положение звезд измерили...

И они оказались смещены!

Они были смещены приблизительно в том направлении и в той степени, которые предсказал Эйнштейн. Он одержал явную победу! С тех пор наблюдения повторяли несколько раз, получая тот же самый  результат.


На самом деле различные стороны  системы Эйнштейна уже подверглись проверке, и в каждом случае было видно, что система работает. Атомная бомба – одно из самых очевидных доказательств правильности  одной из частей теории Эйнштейна.


    Ваша оценка произведения:

Популярные книги за неделю

  • wait_for_cache