355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Наука высокого напряжения. Фарадей. Электромагнитная индукция » Текст книги (страница 7)
Наука высокого напряжения. Фарадей. Электромагнитная индукция
  • Текст добавлен: 25 марта 2017, 23:00

Текст книги "Наука высокого напряжения. Фарадей. Электромагнитная индукция"


Автор книги: авторов Коллектив


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 7 (всего у книги 8 страниц)

Портрет Ады Байрон (1838).

Искушение

Фарадей, верный своей религии, отказался, хотя был очарован этой красивой и умной женщиной, которую сегодня считают первым программистом в истории: он подумал, что таким образом может поставить под удар собственный брак. Несмотря на это переписка между исследователями продолжалась в течение нескольких лет, вплоть до преждевременной кончины Ады Байрон в 1852 году.

ВЗАИМОДЕЙСТВИЕ МЕЖДУ МАГНЕТИЗМОМ И СВЕТОМ: ЭФФЕКТ ФАРАДЕЯ

Хотя казалось, что свет и магнетизм не имеют ничего общего, на самом деле они взаимосвязаны. Всякий раз, когда мы до чего-нибудь дотрагиваемся, атомы наших пальцев вступают во взаимодействие с атомами этого предмета, электроны атомов нашей руки и предмета контактируют и взаимно отталкиваются из-за электромагнитной силы. Материя – практически пустота, но именно взаимное отталкивание электронов нашей руки и электронов предмета подсказывает, что пустоты не существует.

Фарадей был убежден, что каждый вид силы в мире может превращаться в другой: он доказал это, когда воздействовал электричеством на магнетизм. Теперь, после длительного отдыха, Фарадея соблазнял поиск нового решения задачи: достичь того, чтобы электричество вступило во взаимодействие со светом. Не впервые он задумывался над этим: с начала 1820-х годов ученый сделал несколько попыток, каждый раз безуспешных, но все же, вдохновляемый Джоном Гершелем и его опытами 1823 года, по-прежнему обдумывал возможности воздействия на свет электромагнитной спиралью.

В июне 1845 года на собрании Британской ассоциации содействия развитию науки Фарадей познакомился с молодым Уильямом Томсоном, который был большим поклонником его работ, а впоследствии стал великим теоретиком электричества в Англии, участвовал в создании кабеля, который должен был соединить Англию и Америку, но об этом мы уже говорили. Молодой 21-летний шотландец был очарован Фарадеем, они долго беседовали, а позднее начали переписываться: Томсон рассказывал о своих успехах, которые сопутствовали ему при разработке понятия силовых линий, введенных Фарадеем. В конце концов, эта переписка вдохновила Фарадея на возобновление поисков связи света и электричества.

Он сразу же провел серию экспериментов, которые, как это уже случалось в прошлом, не принесли желаемых результатов. Тогда ученый решил вместо электричества, воздействовавшего в качестве силы на свет, использовать магнетизм. Для обнаружения возможного эффекта Фарадей использовал стекло с высоким индексом рефракции – то самое, которое он сделал для Королевского общества между 1829 и 1820 годами, когда его учитель Дэви давал ему много мелких поручений, чтобы научный талант его подопечного не сиял так ярко. Стекло было изготовлено из боросиликата свинца, ученый разместил его между двумя полюсами электромагнита и пропустил через него поляризованный свет параллельно линиям, проходящим от полюса к полюсу. В результате Фарадей заметил, что поляризованный луч подвергается воздействию.

Фарадей держит в руках стеклянный брусок, использованный в 1845 году для доказательства воздействия магнетизма на свет в диэлектриках.

Работник Немецкого музея в Мюнхене залезает в клетку Фарадея, чтобы продемонстрировать ее работу.

Рисунок на основе заметок Фарадея, иллюстрирующий эксперимент с кюветой льда. 

Рефракция – явление, состоящее в изменении направления света при прохождении через прозрачную среду, например через воздух или стекло. Это явление можно наблюдать, если мы опустим карандаш в стакан воды: кажется, что карандаш сломан у поверхности воды. Это связано с рефракцией, или преломлением, света при прохождении через воздух и воду. Отношение между скоростью света в вакууме и в определенной среде называется индексом рефракции, который определяется как частное между скоростью света в вакууме и скоростью света в данной среде: n = c/v.

С другой стороны, свет представляет собой волновое движение (взаимно перпендикулярные электрическое и магнитное поля вибрируют также в направлении распространения волн, поэтому свет состоит из электромагнитных волн). Как правило, свет, испускаемый предметами, не поляризован, поскольку он идет в разных направлениях. Однако свет поляризуется при колебаниях электрического поля в одной плоскости.

Существуют различные способы получения поляризованного света. Один из них, названный поляризацией отражением, открыл в 1808 году Этьен Луи Малюс: он направил луч света на поверхность стекла под углом в 57º, отраженный луч поляризовался, потому что плоскость колебаний была перпендикулярна плоскости воздействия.

Таким же образом Фарадей открыл первый известный случай взаимодействия между магнетизмом и светом в 1845 году. Это отклонение плоскости поляризации света (определенной плоскостью колебаний электрического поля) – результат пересечения магнитным полем прозрачного материала, такого как стекло. Он известен как эффект Фарадея, или магнитооптический эффект, и наблюдается на многих твердых, жидких и газообразных предметах. Эффект возникал, только когда лучи света пересекались на протяжении линий электромагнитной индукции между полюсами.

* * * 

Природа света

Co времен Ньютона существовали две интерпретации природы света. Согласно первой, свет – это поток частиц; именно эту корпускулярную теорию защищал Ньютон. Вторая интерпретация утверждает, что свет – это волна; за ней стоял Христиан Гюйгенс (1629–1695). В конце концов, эксперименты Юнга и Френеля, а также других исследователей установили в начале XIX века волновой характер света. Следующим концептуальным шагом стало доказательство того, что свет является электромагнитной волной. Сам Фарадей доказал возможность взаимодействия света с электрическими и магнитными явлениями, указав на то, что статическое магнитное поле может изменять скорость распространения света на определенных материалах (знаменитый эффект Фарадея). Формулировка данного эффекта позволила Фарадею утверждать, что свет является электромагнитной волной. Это утверждение с одновременным отрицанием, по его мнению, устаревшей идеи об эфире – теории, согласно которой для перенесения световых волн требуется специальная среда флюида, эфир, – было опубликовано в 1846 году в знаменитых Вечерних лекциях по пятницам.

Теория Максвелла

Максвелл собрал данные, полученные Фарадеем, и сформулировал полную математическую теорию, ставшую основой современной оптики. Эта теория представлена в серии из четырех докладов, озаглавленной «О физических силовых линиях» (On Physical Lines of Force), где мы можем прочесть: «Мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений». Максвелл также предсказал возможность существования электромагнитных волн с длиной волны, превышающей видимый свет, которые сегодня мы называем радиоволнами.

ДИАМАГНЕТИЗМ

Уже полностью восстановившись после кризиса, Фарадей вернулся к исследованиям и работал с таким энтузиазмом, что накануне дня, когда он собирался передать в Королевское общество статью об эффекте Фарадея, 4 ноября 1845 года, он сделал еще одно открытие с помощью стекла из боросиликата свинца. Ученый писал:

«Если квадратный брусок вещества толщиной полдюйма и шириной два дюйма подвесить между двумя полюсами мощного электромагнита в форме подковы, при включении электромагнита брусок поворачивался и останавливался, но не вдоль линии между полюсами, а экваториально или перпендикулярно силовым линиям».

Если тело из парамагнитного материала повернулось бы вдоль силовых линий, то стекло поворачивалось перпендикулярно. Фарадей открыл диамагнетизм. Также он поставил эксперименты, в которых луч поляризованного света линейно распространялся через стекло. При воздействии на стекло магнитным полем плоскость поляризации света вращалась. Сегодня это явление известно как эффект Фарадея.

Возвращаясь к диамагнетизму, надо сказать, что Фарадей открыл существование материалов, которые отталкивались магнитом, то есть были противоположностью ферромагнетиков, которые сильно магнитом притягивались. Этот эффект не был чем-то новым, его уже обнаруживали другие ученые, но никому из них он не казался важным. Кроме того, эффект был довольно слабым и трудно поддавался измерениям.

Продолжая эту линию исследования, необходимо было проверить и другие вещества. Так Фарадей открыл, что в зависимости от вещества бруски поворачивались по направлению магнитных силовых линий (их он назвал парамагнетики) или перпендикулярно (диамагнетики). То есть парамагнетики, помещенные во внешнее магнитное поле, притягивались в зону, где поле было наиболее сильным. С диамагнетиками наблюдался противоположный эффект – они притягивались в зону с более слабым полем.

Таким образом, мы можем дать следующее определение парамагнетизму: эффект слабого магнитного притяжения, при котором материалы стремятся развернуться соответственно силовым линиям. Такими материалами являются хром, платина или алюминий.

К веществам-диамагнетикам относятся медь, висмут, фосфор, бумага, сургуч, коровье молоко, яблоки, хлеб. Человеческое существо, по всей видимости, тоже должно относится к диамагнетикам. Фарадей сообщил в Королевском обществе 18 декабря 1845 года:

«[…] если бы человека можно было аккуратно подвесить, как это делал Дюфе, и поместить в магнитное поле, он бы повернулся в стороны экватора, так как все вещества, из которых он состоит, включая кровь, являются диамагнетиками».

Фарадей подчеркивает, что между диамагнетиками существуют различия:

«Доскональное исследование показало, что даже материалы-диамагнетики, отличные от других тел, так как еще нагретые они неактивны в отношении обычных магнитов или при других опытах, не являются абсолютными диамагнетиками, поскольку удерживают часть магнитного потенциала вне зависимости от температуры».

После этого водопада открытий Фарадей сообщил Королевскому обществу, что его работа в области диамагнетизма завершена. Это произошло 7 марта 1850 года.

* * * 

Ферромагнетики, парамагнетики и диамагнетики

В зависимости от ситуации материалы, помещенные в магнитное поле, могут разделяться на следующие виды.

– Ферромагнетики: легко намагничиваются даже небольшим магнитным полем. Кроме того, они стремятся оставаться намагниченными после их помещения во внешнее магнитное поле. Линии магнитного потока проходят через ферромагнетики с большей легкостью, чем через пустоту. Все эти материалы имеют критическую температуру, называемую температура Кюри, выше которой ферромагнетик теряет свои свойства в результате термического возбуждения и превращается в парамагнетик. Например, температура Кюри для железа равна примерно 1043 К.

– Парамагнетики: в отсутствие внешнего магнитного поля имеют случайный порядок магнитных моментов. Однако под действием внешнего магнитного поля магнитные моменты парамагнетиков стремятся повернуться параллельно магнитному полю. Если устранить действие внешнего магнитного поля, парамагнетики не сохраняют магнитных свойств.

– Диамагнетики: очень слабо намагничиваются, при индуцированном магнитном моменте поворачиваются в направлении, противоположном магнитному полю. Если ферромагнетики притягиваются магнитами, то диамагнетики отталкиваются ими. В действительности все материалы имеют свойства диамагнетиков, но это может быть неявно выражено при слабом притяжении к магниту (парамагнетики) и при сильном притяжении к магниту (ферромагнетики).


Теория Пуассона

Феноменологическая теория, разработанная французским математиком Симеоном Дени Пуассоном (1781–1840) и его немецким коллегой Карлом Фридрихом Гауссом (1777–1855), позволяет рассчитать эффект любого числа произвольно расположенных статических электрических зарядов. Две противоположно заряженные частицы притягиваются, и у них обнаруживается свойство ускоряться друг к другу, их скорость можно определить при учете сопротивления среды: если сопротивление среды присутствует, они могут двигаться с постоянной скоростью, , если сопротивление отсутствует, они двигаются с постоянным ускорением. После того как Фарадей установил, что электрические поля воздействуют силами на заряженные частицы, из-за того, что они обладают зарядом и вне зависимости от их скорости, а магнитные поля воздействуют силами на движущиеся заряженные частицы, благодаря уравнениям Максвелла, которые появились позднее, стало возможным определить поля на основе знаний о зарядах и токах.

Симеон Дени Пуассон

СЛЕДСТВИЯ ДИАМАГНЕТИЗМА: РОЖДЕНИЕ КВАНТОВОЙ МЕХАНИКИ

«Теперь мы уже готовы к рассмотрению теории индуцированного магнетизма с той точки зрения, которой, как я полагаю, придерживался Фарадей. Когда магнитная сила действует на произвольную среду, магнитную, диамагнитную или нейтральную, внутри нее возникает явление, называемое магнитной индукцией, которая представляет собой направленную величину, имеющую природу потока, удовлетворяющую тем же условиям непрерывности, что и электрический ток и другие потоки».

Это цитата из книги Джеймса Клерка Максвелла «Трактат об электричестве и магнетизме». Несомненно, автор хотел особо подчеркнуть роль Фарадея в изучении электромагнетизма.

С другой стороны, в 1850 году немецкий физик Вильгельм Эдуард Вебер, в честь которого названа единица измерения магнитного потока в международной системе (вебер), предложил идею о том, что молекулы ферромагнетиков представляют собой маленькие магниты. При воздействии на них магнитным полем молекулы поворачиваются в одном направлении. Так ферромагнетик превращается в магнит. Однако эта идея противоречила постулатам феноменологической теории Пуассона, которая использовалась до сих пор для расчета эффекта от неопределенного количества произвольно расположенных статических электрических зарядов.

Как и прежде, находки Фарадея стали основой для теоретической разработки в рамках новых дисциплин, появившихся позднее. Если различия между диамагнетиками и парамагнетиками были экспериментально выведены британским физиком Джеймсом Альфредом Эвингом (1855–1935), характеристики ферромагнетиков не были глубоко проанализированы до тех пор, пока Поль Дирак и Вернер Гейзенберг (1901–1976) не применили для этого основы развивающейся квантовой механики в 1929 году.

Теория существования электронов подразумевалась в работах Фарадея и Максвелла, но окончательно была сформулирована нидерландским физиком Хендриком Антоном Лоренцем (1853–1928) и использована в первую очередь для оптических явлений.

В 1900 году немецкий физик Макс Планк (1858–1947) ввел термин квант и открыл универсальную постоянную, названную постоянной Планка и использованную для расчета энергии фотона.

В 1905 году Эйнштейн высказал идею, что свет распространяется как частица, фотон. Де Бройль в 1923 году указал, что квантовая механика придает частицам волновые свойства, а излучению, электромагнитным волнам – свойства частиц. Наконец, Гейзенберг и Шрёдингер соединили макроскопические явления со свойствами атома и молекул, и стал понятен феномен ферромагнетизма: в любом ферромагнетике имеются элементарные носители магнитного момента, отвечающие за макроскопические магнитные эффекты и спонтанную намагниченность.

Глава 5.

Больше, чем искра гениальности

Хотя интеллектуальные достижения Фарадея признаны неоспоримыми, а без его наследия невозможно понять последующую научную революцию в физике, ученый никогда не забывал о своем простом происхождении.

Поэтому одной из его главных целей была популяризация науки, особенно среди детей.

Несмотря на приближавшийся закат карьеры Фарадея, первые лучи теоретических и практических следствий его открытий уже загорелись, и это предвещало великие научные открытия в физике, связанные с такими именами, как Эйнштейн, Гейзенберг и Шрёдингер.

Между тем Фарадей решил уйти просто и скромно, как истинный сандеманианец. Он даже умер, сидя в своем любимом кресле, и был погребен в простой могиле, без причудливых узоров и орнаментов на надгробии. Она выглядит так, как и должна выглядеть могила сына кузнеца – бедного, не получившего академического образования, по милости судьбы достигшего высоких должностей в самом главном научном учреждении Англии.

ПОСЛЕДНИЕ ГОДЫ

Фарадей становился все более уверенным в том, что все физические явления в мире связаны между собой. Эта мысль даже привела его к неудавшейся попытке в 1849 году установить связь между электромагнитными силами и ньютоновой гравитацией.

В конце концов он прекратил поиски в этой области, а эстафета оказалась в руках Эйнштейна, который обобщил результаты своих – также неудачных – поисков в так называемой единой теории поля. Фарадей и Эйнштейн умерли, будучи полностью убежденными в своей правоте. Фарадей в очерке *0 возможной связи между гравитацией и электричеством» писал:

«В течение долгого времени я был твердо убежден в том, что силы природы взаимозависимы – из-за их единого происхождения или из-за того, что они являются проявлением одной фундаментальной силы. Эта убежденность часто заставляла меня думать о возможности установить при помощи экспериментов связь, объединяющую гравитацию и электричество. Таким образом, гравитация оказалась бы включенной в группу, и образовалась бы цепочка, объединяющая магнетизм, химические силы, теплоту и другие проявления силы, с помощью взаимных соотношений».

В 1851 году ученый начал рассматривать физическое существование линий силы, догадки о которых он опубликовал впервые в 1831 году. Тогда в отчете он развивал свою концепцию на основе эксперимента, при котором железные опилки, рассыпанные на листе бумаги, расположенном на намагниченном бруске, начинали образовывать кривые, соединяющие полюса магнита.

Лекция «О связи золота (и других материалов) со светом», которую Фарадей прочитал в 1857 году, вдохновила ирландского физика Джона Тиндаля, который через два года после кончины Фарадея описал так называемый эффект Тиндаля, объясняющий голубой цвет неба.

Скоро после этой лекции Фарадей по причине преклонного возраста ушел с поста директора Королевского института, который занимал долгие 36 лет. Впервые в Англии человек, происходящий из низших слоев общества, занимал такой ответственный пост, до сих пор достававшийся людям с хорошим происхождением, для которых научный труд не был способом заработка.

* * *

Эффект Тиндаля

Эффект Тиндаля проявляется, когда пучок света проходит через среду, содержащую мелкие взвешенные частицы, рассеивающие свет. Свет без рассеивания был бы виден только наблюдателю, находящемуся перед источником света. При столкновении с частицами свет отклоняется в разных направлениях, достигая наблюдателя, находящегося на некотором расстоянии от источника, и становясь видимым. Мы можем наблюдать эффект Тиндаля, когда, например, зажигаем фары машины в тумане или когда луч света попадает в комнату с большим количеством пыли, висящей в воздухе. Тиндаль, как и Фарадей, был лектором Королевского института и великим экспериментатором. А в 1859 году он открыл парниковый эффект, воссоздав в лабораторных условиях атмосферу Земли для точного расчета того, сколько солнечной энергии достигает нашей планеты и сколько ее излучается в пространство.

Пучок света сначала проходит через стакан воды без взвешенных частиц. Без рассеивании свет не виден стороннему наблюдателю.

В следующем сосуде находится вода со взвешенными частицами, которые рассеивают свет, делая пучок света видимым. 

* * *

В 1858 году королева Виктория предоставила Фарадею в пожизненное пользование дом, в котором 12 марта 1862 года он провел свое последнее исследование – ученый искал экспериментальные доказательства рефракции солнечного луча под воздействием магнитного поля. Инструменты, имевшиеся в ту эпоху, не были достаточно совершенными, поэтому попытки Фарадея не дали результатов, хотя они и заинтересовали нидерландского физика Питера Зеемана (1865–1943). В1896 году Зееман обнаружил явление, которое искал Фарадей. За это открытие в 1902 году он получил Нобелевскую премию по физике. Таким образом, эффект расщепления спектральных линий источника света под воздействием сильного магнитного поля на разные компоненты, каждый из которых поляризован, известен сегодня как эффект Зеемана. В конце XIX века было известно, что вибрация электронов создает электромагнитное излучение, такое как свет, а также что электроны каждого атома испускают волны строго определенной частоты. То есть каждый атом испускает уникальную цветовую комбинацию, спектральные или цветовые линии являются подписью атомов.

Я принимаю их как почетные назначения, отказ от которых подразумевает оскорбление другой стороне.

Майкл Фарадей о полученных наградах и должностях

Королева Виктория была особенно щедра к Фарадею, хотя он никогда не пользовался этим обстоятельством. Для сандеманианцев с их религиозным кредо авторитет королевы не был так уж велик: например, в 1844 году Фарадей был исключен из состава старейшин сандеманианцев, так как отсутствовал на воскресной службе, и это несмотря на то что он предварительно принес извинения, поскольку должен был ужинать с Ее Величеством. Когда в 1850-х правительство Британии пожелало увидеть Фарадея в составе группы ученых, которые должны были разрабатывать токсичный газ для использования в качестве химического оружия в Крымской войне против России, Фарадей отказался, поскольку подобные исследования не согласовывались с его моральными убеждениями. Несмотря на отказ Фарадея от всех излишеств и скептицизм относительно ценности открытий, он получил не менее сотни наград и должностей от всех основных мировых держав.

Ученый работал в течение более чем 40 лет, оставил семь томов детальных лабораторных заметок, отказался от поста президента Королевского общества и даже отклонил предложение королевы посвятить его в рыцари. На самом деле для Фарадея не было большей награды, чем воплотить в жизнь свою мечту: стать натурфилософом и раскрыть тайны электричества. Именно за раскрытие одной из этих тайн, состоящей в том, что переменная магнитная сила создает электричество, он получил наибольшее признание. На первый взгляд простое открытие стало причиной появления генераторов и динамо-машин, способных изменить ход истории.

Но в 1867 году разум Фарадея начал погружаться во тьму, и 25 августа того же года он умер, сидя в любимом кресле. Ровно через шесть лет Джеймс Клерк Максвелл опубликовал полную теорию электромагнетизма, в которой предлагалось окончательное объяснение природы света. Книга была основана на теориях Фарадея о силовых линиях.

В одном из последних писем, отправленных швейцарскому коллеге Опосту де ля Риву, Фарадей писал о своем отношении к смерти:

«Я благодарен, как мне кажется, потому что после того, как мои способности ослабели и многие вещи в жизни стали неинтересны, мне остается надежда, которая превращает созерцание смерти в облегчение, смерть не страшит меня. Этот мир является даром Божьим, и так как Он дает его нам, чего же мы должны бояться? Его невиданный дар, его возлюбленный сын – это основа нашей надежды […]. Я счастлив и доволен».

Королева Виктория намеревалась организовать погребение Майкла Фарадея рядом с Исааком Ньютоном и другими великими деятелями в Вестминстерском аббатстве, но вновь дали о себе знать религиозные воззрения английского ученого, который оставил следующие распоряжения: «Скромные похороны, на которых должны присутствовать только мои родственники, самый простой надгробный памятник в самом обычном месте земли».

Рядом с могилой Исаака Ньютона в Вестминстерском аббатстве есть памятная табличка в честь Фарадея. Но его, как твердого в своей вере сандеманианца, похоронили согласно его пожеланию на сандеманианском участке кладбища Хайгейт в Лондоне.

ПРОСВЕТИТЕЛЬ

Одна из самых выдающихся граней таланта Фарадея выходит за пределы его научных исследований, хотя и дополняет их – мы говорим о работе просветителя. Фарадей не только был автором тысяч страниц с описанием опытов, которые может без труда прочесть любой неофит, так как в них нет математических уравнений и сложных объяснений, но также он прочел множество публичных лекций, чтобы приблизить людей к науке, и особенно много работал с детьми.

В 1825 году Фарадей начал читать Вечерние лекции по пятницам, в 1827-м – Рождественские лекции для юношества. Эти лекции имели большой успех и привлекли новых членов и подписчиков в Королевский институт, что помогло исправить пошатнувшееся финансовое положение этого учреждения. Слава Фарадея распространялась не только на научное сообщество, но и на простых любителей науки. Недаром даже такие крупные газеты, как «Таймс», часто печатали объявления о Вечерних лекциях по пятницам. Но самыми популярными были Рождественские лекции для юношества (Christmas Lectures), которые в середине XIX века собирали до 800 слушателей. Эти циклы лекций продолжались и после смерти Фарадея, и сегодня миллионы людей смотрят их по телевизору: ВВС транслирует их с 1966 года. Самый знаменитый цикл Рождественских лекций – без сомнения, «История свечи». Фарадей прочел ее в 1860 году, и это был последний из 17 циклов с 1827 года. «История свечи» была опубликована и переведена на многие языки. Причина необыкновенного успеха Фарадея в качестве лектора основывалась на том, что он не ограничивался сухим изложением научных знаний, а пытался сделать рассказ как можно более понятным для всех слушателей.

Могила Фарадея, оставившего указания о погребении на сандеманианском кладбище Хайгейт в Лондоне.

Портрет Фарадея с женой Сарой, 1855 год.

Литография Александра Блейкли, на которой Фарадей читает одну из своих Рождественских лекций для юношества в Королевском институте, 1856 год.

В начале лекции и с помощью серии хитроумных приемов, незаметных аудитории, нужно держать интерес, пока этого требует тема.

Майкл Фарадей о том, как оратор должен заинтересовать публику

Фарадей был твердо убежден, что наука должна выйти на улицы, а не замыкаться в лабораториях и консервативных учреждениях, поэтому он прилагал усилия для того, чтобы его выступления были как можно более привлекательными, в стиле современного телешоу. Для него были важны и правильная вентиляция лекционного зала, и расположение входов и выходов. Ученый говорил:

«Стол лектора не должен быть загроможден аппаратами: лучше когда эксперименты проводятся по ходу лекции […]. Качество, которое выделяет хорошего лектора, хоть и не является самым важным, – красноречие […]. Лектор должен быть спокоен и уверен, он не должен выглядеть взволнованным, испуганным, невнимательным, чрезвычайно сконцентрированным на рассматривании и описании своей темы. Его жесты не должны быть поспешными и резкими, а медленными, простыми и естественными, состоящими в основном в перемене положения тела для того, чтобы избежать впечатления зажатости или монотонности, неизбежной в противном случае. Поведение лектора должно подчеркивать уважение к аудитории, лектор никогда не должен забывать о присутствии слушателей. Никакие происшествия не должны менять его внешнего вида или поведения, за исключением ситуаций, которые мешают слушателям. Никогда по возможности нельзя поворачиваться к аудитории спиной; если все-таки приходится это делать, необходимо приложить все усилия, чтобы публика думала, что главная цель лектора состоит в ее обучении и развлечении».

Фарадей также настаивал, что лектор всегда должен составлять лекции письменно, но никогда не должен читать их, чтобы избежать монотонности. Он полагал, что в течение часа лекции можно изложить все свои идеи, и вспоминал некоторых излишне самоуверенных лекторов, которые теряли счет времени в длинных рассуждениях, выставляя напоказ свои огромные знания.

При всем этом Фарадей осознавал, что существует тонкая грань между слишком академичной лекцией и слишком научно-популярной, и требуется мастерство эквилибриста, чтобы не оказаться по ту или другую сторону этой грани: «Слишком научно-популярная лекция не может научить, но лекция, которая слишком многому учит, не может быть научно-популярной». Фарадею удалось достигнуть золотой середины и вернуть популярность Королевскому институту, который и сегодня развивается, сохраняя это направление: проводит занятия по математике и технологии, реализует проекты внеклассной деятельности, создает видеофильмы.

Среди европейских ученых, участвовавших в лекциях Королевского института в течение XIX века, можно назвать автора периодической системы элементов Дмитрия Менделеева (1834–1907), специалиста по органической химии Жана-Батиста Андре Дюма (1800–1884), личного друга Фарадея, автора книги «Историческое восхваление Майкла Фарадея» (Èloge historique de Michael Faraday, 1868) и знаменитого итальянского химика Станислао Канниццаро (1826–1910).

* * *

Цвет мальвы: синтетический цвет, придуманный Фарадеем

Лекции Майкла Фарадея стали источником вдохновения для многих ученых и обычных людей. Один из необыкновенных случаев – история английского химика Уильяма Генри Перкина (1838–1907). В 1856 году он случайно смешал анилин с дихроматом калия – данная смесь, на первый взгляд, ничего не стоила. Однако Перкин внимательно посмотрел на пурпурную искорку смеси, добавил спирт и растворил им смесь, и получилось вещество пурпурного цвета, которое прекрасно окрашивало ткань. Перкин в 18-летнем возрасте оставил учебу и запатентовал свой продукт. Использовав все сбережения семьи, он создал красильную фабрику и начал производство своего анилинового пурпурного.

Во Франции новый краситель стал массово использоваться и получил название «мальва». Этот период в истории многие исследователи называют десятилетием мальвы, настолько популярным стал цвет. Было открыто множество предприятий по производству синтетических красок, стимулировавших параллельно развитие органической химии. Получив известность и разбогатев, Перкин прочел лекцию о красителях в Лондонском химическом обществе. В аудитории присутствовал и 70-летний Майкл Фарадей.

НАСЛЕДИЕ ФАРАДЕЯ

Глубокая духовность и способность к самообразованию подталкивали Фарадея к неутомимым поискам взаимосвязи между движением, магнетизмом и электричеством, как будто между частями Троицы – отдельными, но неразделимыми. Благодаря этой концепции природной симметрии Фарадей смог доказать, что возможно повернуть установленный порядок, пропустить электрический ток внутрь магнитного поля, чтобы создать движение, – так появился первый электрический двигатель, обеспечивающий сегодня движение как компьютерного диска, так и гигантского завода.


    Ваша оценка произведения:

Популярные книги за неделю