Текст книги "Физика в бою"
Автор книги: авторов Коллектив
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 3 (всего у книги 10 страниц)
ВОЗДУХ, СТАВШИЙ ОРУЖИЕМ
Инженер-майор В. НЕКЛЮДОВ, инженер-майор Г. ПОЖИДАЕВ
На первый взгляд, это походило на детскую игру. Воздух накачивали в плотно закрытую камеру обыкновенной металлической трубы, неожиданно убирали одну перегородку и смотрели, как он истекает из камеры и движется в трубе. Ставили на пути воздушной струи игрушечные макеты и наблюдали, как они переворачиваются. Или гнали сжатый воздух по той же трубе, а на пути устраивали большую пустую камеру и опять смотрели, как он поведет себя при внезапно полученной свободе. Или еще лучше: делали воздуху в темном, глухом коридоре «подножку», заставляя разбивать «нос» о совершенно несерьезные, легко разрушаемые деревянные преграды и с любопытством наблюдали, в каком виде он добежит до тупика.
Чего только еще его не заставляли делать! И хлопать заслонками и заглушками, забираться в ловушки и лабиринты, просачиваться через песок и гравий. Додумались даже до того, что давали ему поиграть мячиком, которым он должен был обязательно заткнуть какое-то отверстие…
Однако это были далеко не игрушки. С некоторых пор ласковый и безобидный «эфир» превратился в грозное оружие. Какая же сила сделала его таким? Эта сила – мгновенный удар десятков миллионов атмосфер. Ядерный взрыв. Известно, что о мягкую воду можно разбиться, если падать с высоты более десяти метров. Но вода в 400 раз плотнее воздуха. Теперь же оказалось, что можно «разбиться» и о воздух.
Сжатый воздух со своим неразлучным другом поршнем давно делал и делает много добрых дел в технике. Это и пневматический инструмент, и насосы, пневматические мельницы, даже пневмотранспорт. Служил сжатый воздух и военной технике, правда непродолжительно и бесславно. В конце XVIII века, как пишут историки, некоторые войсковые части Австрии, Франции и других стран были вооружены пневматическими ружьями, которые стреляли на дальность в 100 м. Потом их вытеснило огнестрельное оружие. Сейчас «духовую» винтовку можно встретить разве только в тирах городских парков и кинотеатров, да еще этот принцип нашел применение в детских пистолетах-хлопушках.
Конечно, взрыв тротила, заключенного в бомбы и снаряды, делает существенным воздействие взрывной волны на людей. Но главный поражающий эффект все-таки заключается в фугасном действии и разлете осколков. Взрывная воздушная, или, как ее называют, ударная, волна действует в этом случае в небольшом радиусе.
Совсем иным стало положение с появлением ядерно-го оружия. Известно, что половина всей гигантской энергии, выделяемой при ядерном взрыве, уходит на образование ударной волны. И это, конечно, не прежняя взрывная волна, поражающее действие которой определяется коротким импульсом. Не случайно энергия ядерного взрыва, приведенная к тротиловому эквиваленту, измеряется сейчас уже десятками миллионов тонн. Ударная волна получила новые качества.
Исследованием ее качеств и занялись военные специалисты для того, чтобы найти эффективные способы защиты людей, боевой техники и различного оборудования. Этим и объясняются описанные нами в начале статьи странные, на первый взгляд, «игры», которыми занимаются в лабораториях и на полигонах ряда стран на протяжении уже более десятка лет.
Рассмотрим кратко основные физические свойства ударной волны ядерного взрыва. Уже первые испытания показали, что ударная волна – не простое явление. Гигантский поршень ядерного взрыва настолько сильно ударяет в окружающий воздух, что прессует его в сильно сжатую «стену», которая с большой скоростью, во много раз превышающей скорость звука, начинает распространяться во все стороны от центра взрыва. Приход в какую-либо точку ее передней поверхности, или, как говорят, фронта, сопровождается мгновенным скачком давления. Следом за ударом этой «стены» объект подвергается воздействию скоротечного ураганного вихря, который может иметь скорость в несколько сотен километров в час. Даже на расстоянии около 10 км от места взрыва мегатонной бомбы, как сообщалось в печати, максимальная скорость ветра превышает 110 км/час.
Всестороннее обжатие волной объекта и ее скоростной напор могут продолжаться до нескольких секунд, в зависимости от калибра ядерного боеприпаса и расстояния от эпицентра взрыва. В течение этого времени давление в волне и скорость движения воздуха падают. Давление, сравнявшись с атмосферным, меняет свой знак, то есть превращается в разрежение, и ток воздуха меняет направление на обратное. После этого в окружающей среде восстанавливается равновесие.
Выяснилось также, что при одном и том же давлении во фронте более сильные повреждения наносит ударная волна ядерного взрыва, чем взрыва тротила. Это объясняется тем, что продолжительность действия взрывной волны тротила в десятки и даже сотни раз меньше. Такое существенно новое качество ударной волны ядерного взрыва, которое, кстати, предопределило сложнейшую картину взаимодействия ее с различными преградами, и явилось, наряду с величиной давления, одним из главных факторов ее невиданного поражающего воздействия. Но это сильное качество стало одновременно и слабостью ударной волны. Оно оказалось одним из тех звеньев, взявшись за которое специалисты приступили к планомерным поискам защиты от нее.
Итак, главные физические характеристики ударной волны – избыточное давление, то есть давление воздуха, превышающее атмосферное, и скоростной напор, а также время действия фазы сжатия и ветрового движения воздуха. Не менее важным оказалось и так называемое давление отражения, которое образуется при действии ударной волны на преграду. Оно способно во много раз превысить избыточное давление в падающей волне.
Какими же путями на основании этих и других физических свойств ударной волны осуществляются за рубежом поиски защиты от нее? (Заметим, что мы рассматриваем здесь только воздушную ударную волну, не затрагивая волну сжатия в грунте и ударную волну ё воде.) Как сообщалось в зарубежной печати, сам человек, без защиты, очень уязвим от воздействия ударной волны. В городе он, например, может получить так называемое косвенное поражение, вызываемое летящими осколками оконных стекол и разрушающихся зданий, при избыточном давлении 0,14 кг/см2. Хотя, как сообщала зарубежная печать, световое излучение ядерного взрыва может нанести ему ожоги второй степени на расстояниях, где давление имеет в два раза меньшую величину, то есть 0,07 кг/см2.
Однако на основе изучения свойств ударной волны сделаны определенные рекомендации, которые позволяют незащищенному человеку уцелеть при давлениях, в 10 раз и более превышающих названное выше и определяемое величиной его прямого поражения, то есть непосредственным сжатием волной. Для этого надо максимально уменьшить так называемое метательное действие волны, связанное со скоростным напором, и уменьшить вероятность поражения осколками. Все это осуществимо, если после ядерной вспышки, находясь на открытой местности, быстро упасть на землю лицом вниз и головой в направлении взрыва или в противоположную сторону. Времени для этого может быть достаточно. Так, например, на преодоление расстояния в 16 км от эпицентра воздушного взрыва мощностью 10 мгт ударная волна тратит 37 секунд. Площадь тела лежащего человека, подвергающегося действию ударной нагрузки, будет малой, и опасность перемещения его уменьшится. От прямого воздействия ударной волны, и в частности для защиты барабанных перепонок, в этом случае рекомендуется использовать специальные предохранительные капсулы.
Для защиты личного состава от скоростного напора ударной волны и летящих осколков разрушаемых сооружений очень эффективны, как считают зарубежные специалисты, окопы и даже открытые траншеи и простейшие полевые сооружения в виде блиндажей и убежищ легкого типа. Избыточное же давление во фронте ударной волны выше 2 кг/см2, по их мнению, требует уже постройки специальных защитных сооружений. Остовы таких сооружений возводятся из дерева, волнистой стали, бетона и железобетона. Однако эти сооружения так или иначе связаны с окружающей воздушной средой; потому одной из важных проблем стала борьба с затеканием ударной волны через дверные проемы, вентиляционные и другие сантехнические каналы. Появилась специальная классификация отверстий – отверстия большого и малого диаметра, открывающиеся периодически и открытые постоянно. Все они оборудуются специальными защитными устройствами – защитными герметическими дверями, противовзрывными клапанами или клапанами-отсекателями, волногасителями.
Двери делаются равнопрочными с защитными сооружениями. Но если на остовы заглубленных сооружений действует волна сжатия в грунте, то двери воспринимают воздушную ударную волну. Для защиты от больших давлений они получаются весьма массивными. На рис. 3 показана защитная дверь одного из зарубежных пунктов управления, рассчитанная на избыточное давление в несколько десятков килограммов на квадратный сантиметр.

Рис. 3. Защитная дверь входа в пункт управления
А нельзя ли облегчить условия работы дверей при воздействии ударной волны? Оказывается, можно, если предварительно «загрузить» волну, заставить ее растратить часть энергии. Так, например, считают, что, установив во входных туннелях перегородки, которые разрушаются на пути движения волны к дверям, можно снизить действие ее на дверь, поскольку обломки перегородок блокируют проход и отсекают часть ударной волны, тем самым ослабляя ее.
Для предохранения сооружений от затекания ударной волны через отверстия, которые в обычное время открыты – воздухозаборные, выхлопные и другие, – с успехом может использоваться само свойство большой продолжительности действия ударной волны. В этом случае применяют специальные системы, состоящие из различных типов противовзрывных клапанов, лабиринтных каналов или расширительных камер.
Один из вариантов таких защитных устройств работает по следующему принципу. Ударная волна одновременно подходит к воздухозаборному отверстию и противовзрывному клапану, находящимся на некотором расстоянии друг от друга. Клапан, устроенный по типу золотника, под действием волны перемещается и успевает закрыть вентиляционный канал до того момента, как по этому каналу снаружи подойдет ударная волна. Длина канала-лабиринта выбирается с таким условием, чтобы время движения по нему не превышало времени срабатывания клапана.
Вместо лабиринта может применяться расширительная камера. В этом случае используется свойство сжатого воздуха при резком увеличении сечения канала, в котором он движется, терять скорость, а с ней плотность и давление. Расширительная камера может использоваться и в тех случаях, когда запорные клапаны пропускают в сооружение определенную часть волны. К таким клапанам относится, например, маятниковый. Он представляет собой металлический шар, подвешенный в специально изогнутом участке воздуховода или трубопровода. Под действием ударной волны шар перемещается относительно точки закрепления, запирает сферическое гнездо в воздуховоде и держит его в таком положении во время действия фазы сжатия. Когда наступает разрежение, шар отводится обратным движением воздуха. Объем расширительной камеры определяется или временем срабатывания клапана или допустимым давлением, которое может возникнуть в сооружении.
Там, где потребность в воздухе невелика, вентиляционная система может защищаться песчаными или гравийными волногасителями. В этом случае волна не отсекается, как это происходит при действии клапана, а гасится в результате многократных отражений в толще гравия или песка. По сообщениям печати, испытание таких волногасителей показало, что они способны снизить избыточные давления в ударной волне с 7 до 0,014 кг/см2.
В ряде случаев, особенно при защите больших воздухозаборных отверстий, использование энергии самой ударной волны становится неэффективным. Из-за громоздкости клапанов-отсекателей, их сравнительно медленного срабатывания она успевает проникнуть в сооружение. В таких случаях на помощь приходит автоматика. Клапаны получают дистанционное управление, закрывая отверстия по сигналу специальных датчиков до прихода ударной волны.
Датчиками могут служить фотоэлектрические реле, срабатывающие при вспышке ядерного взрыва. Сигналом о взрыве могут служить и гамма-излучения. К датчикам подключаются сервомеханизмы, которые и перемещают запорные элементы клапанов. Основным недостатком систем с дистанционным управлением клапанов считается необходимость осуществления специальных мероприятий по защите электронных устройств, весьма чувствительных к различным внешним воздействиям.
Вынужденные считаться с дороговизной ядерного оружия зарубежные военные специалисты одновременно с натурными испытаниями в течение ряда лет разрабатывали методы и средства моделирования и имитации ударных волн. При этом сыграло свою роль и подписанное многими странами соглашение о запрещении некоторых видов испытаний ядерного оружия.
Изучение физических свойств ударной волны ядерного взрыва, а также законов газовой динамики, описывающих механизм образования ударных волн, – кстати, законов, хорошо известных задолго до появления атомного оружия, – позволило разработать несколько способов создания или, как еще говорят, генерирования ударных волн, близких по своим параметрам к волнам ядерного взрыва.
Наибольшее распространение для моделирования ударных волн с нужными характеристиками за рубежом получили так называемые ударные трубы. Простейшие из труб – пневматические. С них как раз и начинался наш рассказ. Как уже говорилось, в одну часть трубы, так называемую камеру высокого давления, нагнетается воздух. После разрыва диафрагмы он устремляется в трубу, генерируя ударную волну. Широко распространены трубы, в которых ударная волна создается и другим путем.
Диаметры ударных труб, созданных за рубежом, самые различные: от нескольких сантиметров до нескольких метров. Известна, например, горизонтальная ударная труба диаметром 1,8 м. Длина ее 75 м, а расчетное давление до 7 кг/см2. Как сообщалось в печати, в США, близ Киртленда (штат Нью-Мексико), создается ударная труба в виде тоннеля, пробитого в горе, длиной 1 тыс. м и диаметром 6 м. В этой трубе предполагается испытывать крупные модели сооружений, а некоторые сооружения и в натуральную величину.
Следует отметить, что многие из перечисленных выше защитных устройств прошли испытания именно в ударных трубах. Однако зарубежные специалисты считают, что из-за ограниченных размеров труб с их помощью не удастся в полной мере решить сложный комплекс задач по исследованию ударных волн и их воздействия на различные объекты. Поэтому ведутся поиски способов имитации воздействия ударной волны на больших площадях. Так, например, для исследования реакции заглубленных защитных сооружений, стартовых позиций межконтинентальных баллистических ракет разработаны способы создания давления на площади в 10 тыс. м2 с помощью разложенной на поверхности земли сети из детонирующего шнура. Сообщалось, что удалось достигнуть давления в ударной волне при таком способе в 21 кг/см2 и больше.
Для имитации ударной волны ядерного взрыва может быть использовано и специальное устройство, излучающее импульсы мощностью 20 тыс. мегаватт в миллионные доли секунды. Этот эффект достигается подачей заряда в очень короткое время от пятнадцати параллельно включенных больших конденсаторов на мостик сопротивления, который, взрываясь, имитирует ядерный взрыв.
Мы рассмотрели только некоторые проблемы, связанные с защитой от воздействия воздушной ударной волны ядерного взрыва. Из приведенных примеров видно, что эффективные способы защиты от поражающих факторов ядерного оружия, и в частности от ударной волны, основываются на знании ее свойств и использовании физических закономерностей.
РАКЕТА И ЯДЕРНЫЙ ВЗРЫВ
Инженер-полковник В. МАЛИКОВ, доцент, кандидат технических наук
Множество самых различных движений встречаем мы на каждом шагу: вращаются колеса электровоза, упало яблоко с яблони, прочертил небо самолет… Но если внимательно присмотреться к процессам, протекающим в природе и технике, то легко подметить и выделить особую группу движений – тех, которые периодически, через равные промежутки времени, повторяются: качается маятник часов, волна за волной набегает на морской берег, четкую синусоиду (т. е. кривую линию волнистой формы, графически изображающую изменение синуса в зависимости от изменения угла) вычерчивает электронный луч на экране осциллографа. Физики давно занимаются изучением подобных процессов, и результаты их наблюдений, выводов широко используются в решении самых различных технических задач.
С разнообразными формами колебаний – электромагнитными, звуковыми, механическими и другими – сталкиваются и военные специалисты. Чтобы познакомиться подробнее с их работой в этом направлении, давайте остановимся только на механических колебаниях, многие виды которых успешно используются при создании различной военной техники и позволяют решать проблемы, связанные с повышением эффективности ее боевого применения. Вместе с тем некоторые виды механических колебаний, возникающие при эксплуатации отдельных образцов, вредны, снижают их боевые качества и требуют осуществления целого ряда специальных конструктивных и технологических мероприятий. Так, повышение дальнобойности и скорострельности наземной, и особенно зенитной, артиллерии вызвало увеличение колебаний стволов и орудий, что привело к значительному снижению кучности стрельбы. В связи с этим потребовалось усовершенствовать конструкции лафетов и стволов, чтобы снизить разброс снарядов.
С появлением на поле боя танков, корпуса которых подвержены трем видам угловых и трем видам линейных колебаний, возникла проблема повышения эффективности стрельбы с ходу, что было осуществлено разработкой систем стабилизации вооружения танка в вертикальной и горизонтальной плоскостях.
Моряки с незапамятных времен имеют дело с колебаниями судов в волнующемся море, с вибрациями отдельных частей корпуса судна из-за действия неуравновешенных масс судовых механизмов. Помимо вертикальных колебаний, корпус корабля подвергается так называемой бортовой и килевой качке. Для уменьшения таких колебаний разработаны специальные устройства, получившие названия поглотителей колебаний судовых механизмов и успокоителей качки корабля.
В авиации, в связи с увеличением скоростей, возникла проблема исключения вибраций крыла и других несущих поверхностей самолета от действия аэродинамических сил, которые могут вызвать вибрации с нарастающими амплитудами, получившие название флаттера.
Наконец, успешное развитие ракетной техники во многом определялось решением проблемы колебаний корпусов ракет, вибрации отдельных частей, устройств и систем. Вибрационные нагрузки, возникающие в корпусе ракеты во время старта и полета, как сообщалось в зарубежной печати, часто приводили к снижению надежности механических и электронных систем. Появились в ракетной технике и другие проблемы, связанные с защитой от механических колебаний. Американские военные круги, делая ставку на межконтинентальные баллистические ракеты, сильно обеспокоены тем обстоятельством, что ракеты легко уязвимы от воздействия ударной волны и других поражающих факторов ядерного взрыва. Это вынудило специалистов искать пути обеспечения неуязвимости ракет от воздействия ядерного оружия.
По мнению руководящих деятелей Пентагона, эта задача должна решаться созданием подземных, так называемых шахтных пусковых установок. Однако на деле это оказалось не так-то просто. При разработке и строительстве шахтных установок возник ряд сложных научно-технических проблем. Одна из них как раз и ставит вопросы обеспечения сохранности ракет и различного электронного пускового оборудования от силового воздействия взрывов ядерных зарядов и вызываемых ими колебаний грунтовых массивов в местах расположения защитных сооружений – пусковых шахт и центров управления ракетных баз. Решить эту задачу, как отмечали зарубежные специалисты, оказалось особенно трудно в связи с тем, что американские межконтинентальные ракеты на жидком топливе типа «Атлас» и «Титан» и на твердом топливе «Минитмен» весьма чувствительны к сравнительно небольшим силовым перегрузкам.
Известно, что при взрыве ядерного заряда на поверхность земли действует огромное давление. От эпицентра взрыва распространяются ударные волны в воздухе и волны сжатия в грунте. В результате их воздействия в сооружениях возникают, как правило, быстрые по времени перемещения, приводящие к вертикальным, горизонтальным и крутильным колебаниям шахтных пусковых установок с относительно большими амплитудами и частотами, а на ракеты и оборудование, размещенные в шахтах, действуют значительные инерционные и вибрационные нагрузки.
Характер колебательных движений шахты существенно зависит от физико-механических свойств грунта и геологического строения района, где сооружена шахтная пусковая установка. В специальной литературе указывается, что параметры движения шахты при одном и том же избыточном давлении больше зависят от геологических условий, чем от мощности ядерного взрыва. Если шахта заложена в мягком грунте, имеющем низкочастотные характеристики колебаний, она будет подвержена большим перемещениям и сравнительно малым ускорениям. Иное дело – шахта, размещенная в твердых породах, обладающих высокочастотными характеристиками колебаний. Под воздействием взрыва она получит лишь небольшие перемещения, но зато значительные по величине ускорения.
В большинстве случаев шахтные пусковые установки, из-за их больших вертикальных размеров, приходится располагать в неоднородных грунтах, характеризующихся различной плотностью и частотными характеристиками. В связи с этим в американской практике возникли два направления в проектировании таких установок. Первое базируется на заблаговременной геологической разведке в районах предполагаемого строительства ракетных баз. В зависимости от геологического разреза и расчетного эквивалента ядерного заряда определяются период и амплитуды колебаний грунта и расчетные параметры движения шахты. Второе направление предусматривает разработку и проектирование шахтных пусковых установок для наиболее распространенных, так называемых «стандартных», грунтовых условий, с последующим проведением проверочных расчетов применительно к конкретным геологическим условиям, выявленным в процессе проходки шахт и их возведения. В американской печати сообщалось, что, как правило, проектировщики используют второе направление и только в исключительных случаях первое.
На рис. 4 показана зависимость перемещений и ускорений шахты от частотных характеристик колебаний «стандартного» грунта, возникающих при наземном ядерном взрыве. Как видно из графиков, чем меньше частота колебаний грунта, тем больше перемещение и меньше ускорение шахты.

Рис. 4. Зависимость перемещений и ускорений пусковой шахты от частотных характеристик колебаний грунта
Проектирование и строительство шахтных пусковых установок и обеспечение сохранности ракет и электронного пускового оборудования, отмечалось в иностранной печати, в значительной степени усложняется, когда ракетные базы размещаются в районах с водонасыщенным грунтом. Требуется знать его гидростатическое давление (гидростатика – часть гидродинамики, изучающая равновесие жидкости, а также равновесие твердых тел, полностью или частично погруженных в жидкость). При наличии гидростатического давления грунтовых вод горизонтальные ускорения пусковой шахты по своей величине будут близкими к вертикальным и могут достичь весьма значительных величин.
Следует, однако, заметить, что источником нагрузок и вибраций могут быть не только взрывы ядерных зарядов, но и работа вспомогательных агрегатов и машин. Ее тоже приходится учитывать проектировщикам.
Колебания шахтных пусковых установок вызывают расстройство функций аппаратуры и систем, размещаемых на борту ракеты, а также механизмов технологического оборудования. Все это может сорвать боевой пуск ракет. И вот, для того чтобы снизить действующие на ракету перегрузки до безопасных значений, применяют специальные системы амортизации как для ракет в целом, так и для отдельных, наиболее чувствительных объектов технологического оборудования и пусковой аппаратуры.
Системы амортизации, по мнению зарубежных специалистов, значительно повышают вибростойкость ракет и позволяют изолировать от нежелательных колебаний оборудование шахты. Действительно, если ракета жестко соединена с опорным основанием шахтной пусковой установки, она и ее системы будут испытывать те же ускорения, скорости и перемещения, которым подвержена сама установка. Особенно опасны ускорения, поскольку они способны развивать значительные силы инерции и приводить в конечном счете к расстройству бортовых систем ракет и механизмов шахтного оборудования.
Чтобы избежать этих нежелательных явлений, ракеты в шахтах устанавливают на упругие элементы – амортизаторы, которые растягивают во времени действие сил инерции и таким образом уменьшают передаваемые усилия.
Однако разработка эффективных систем амортизации ракет и объектов технологического оборудования вызывает за рубежом значительные научно-технические трудности. Процессы взаимодействия шахт с грунтом при механическом действии ядерного взрыва еще недостаточно изучены. В американской практике расчетные параметры амортизации ракет и технологического оборудования выбираются на основании обобщения большого количества опытных данных с учетом собственных колебаний амортизируемых объектов.
Ракеты и другие крупные объекты технологического оборудования шахты имеют низкие частоты собственных колебаний, в то время как большинству элементов электронно-пусковой аппаратуры свойственна высокая частота колебаний. Поэтому системы амортизации ракет и оборудования шахт и центров управления ракетными базами в США конструктивно выполняются по трем различным схемам.
По первой схеме ракета и все оборудование шахты объединяются в общую клеть, снабженную единой системой амортизации.
По мнению американских специалистов, основное преимущество такой схемы заключается в том, что из-за большой массы она способна гасить высокочастотные колебания и ускорения шахты, а также снижать низкочастотные колебания. К таким колебаниям чувствительны ракеты и крупные объекты технологического оборудования.
При разработке подобной амортизации общая масса колебательной системы и суммарная жесткость ее упругих элементов выбирается в зависимости от частоты вынужденных колебаний шахты. Сообщалось, что, если удачно выбраны расчетные параметры, такая система значительно ослабляет действие вынужденных колебаний шахты на ракету и оборудование. Она особенно эффективна для шахт, размещаемых в грунтовых породах, частотные характеристики которых мало изменяются при взрывах ядерных зарядов различной мощности.
Надо сказать, что общая система амортизации накладывает определенные условия на конструктивную стойкость отдельных элементов оборудования. Элементы, находящиеся в общей колебательной системе, должны быть устойчивы к перегрузкам, возникающим при избыточных давлениях во фронте воздушной ударной волны до 2 кг/см2. Что же касается работающих агрегатов технологического оборудования, размещенных в шахте, то они должны иметь собственные системы виброизоляции, чтобы исключить передачу вибраций (колебаний, дрожаний) опорным основаниям.
Общая система амортизации нашла применение в шахтных пусковых установках для амортизации ракеты «Атлас». Она состоит из четырех пружинных блоков-подвесок, поддерживающих квадратную клеть с ракетой и необходимым оборудованием. Общий вес клети составляет 1350 т, высота ее 45 м при длине стороны основания 14,7 м.
В клеть вмонтирована ферма, обеспечивающая распределение нагрузки от четырех точек крепления на десять вертикальных несущих элементов. Верхняя часть пружинного блока крепится к металлическим кронштейнам на стене шахты, а нижняя – к кронштейнам клети. Каждая блок-подвеска представляет собой набор из шести пар параллельно работающих телескопических пружин. Диаметр одной пружины 600 мм, толщина прутка, из которого она изготовлена, – 62,5 мм.
Амортизация клети в вертикальной плоскости осуществляется за счет упругости пружин, а в горизонтальной плоскости – маятниковой конструкцией подвески. Для уменьшения амплитуд горизонтальных колебаний маятниковой подвески между клетью и стенками шахты установлены специальные гасители. Они ограничивают перемещения клёти до приемлемых пределов. Зазор между стенкой шахты и клетью составляет 45 см, что, по мнению зарубежных специалистов, достаточно для максимально возможных перемещений клети при действии на шахту избыточного давления во фронте воздушной ударной волны, равного 7 кг/см2.
По второй схеме для ракеты и каждого из объектов оборудования шахты разрабатывается отдельная, так называемая автономная, система амортизации. Сообщалось, что это требует не только огромной конструкторской работы, но и проведения весьма дорогих натурных или стендовых испытаний. Если же испытательные стенды, позволяющие воспроизводить или моделировать действия ядерного взрыва на шахты, отсутствуют, разработка систем автономной амортизации в еще большей степени затрудняется. Применение автономной системы амортизации за рубежом признается оправданным в конструкциях тех пусковых установок, где предусматривается небольшое количество объектов технологического оборудования, нуждающихся в амортизации, или если используются устройства, обладающие высокой стойкостью к механическому действию ядерного взрыва. По этой схеме выполнена, в частности, система амортизации американских ракет «Титан II» (рис. 5). Несколько другая, но основанная на тех же принципах система амортизации ракеты «Минитмен». Особенность ее – наличие специального устройства, обеспечивающего вертикальное положение ракеты путем поджатия или ослабления упругих элементов амортизаторов.

Рис. 5. Система амортизации ракеты
Третья схема предусматривает объединение групп оборудования, размещаемых на одном уровне (этаже) шахты или центра управления ракетными базами и применение для этой группы оборудования индивидуально-групповой системы амортизации. Такая схема амортизации получила наименование комбинированной. Она находит применение при амортизации электронно-пусковой аппаратуры как в шахтных пусковых установках, так и в центрах управления.
Так, центр управления шахтными пусковыми установками ракет «Минитмен» для защиты электронно-пускового оборудования и предупреждения травм у обслуживающего персонала при воздействии ядерного взрыва имеет маятниковую систему амортизации. Она представляет собой подвешенную к верхнему перекрытию платформу размером 8,4 на 3,6 м и весом 31,5 т. Четыре упругих элемента обеспечивают снижение перегрузок, действующих на платформу в вертикальной и горизонтальной плоскостях. Для гашения колебаний платформы в горизонтальном направлении предусмотрены четыре пневматических демпфера.








