355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Юный техник, 2000 № 06 » Текст книги (страница 3)
Юный техник, 2000 № 06
  • Текст добавлен: 8 октября 2016, 15:59

Текст книги "Юный техник, 2000 № 06"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 3 (всего у книги 6 страниц)

У СОРОКИ НА ХВОСТЕ



ПОРА ВЫБРАСЫВАТЬ «ВИДАК»? Российские электронщики правильно поступили, когда прекратили заниматься изобретением отечественных видеомагнитофонов. 2000 год может стать последним в их истории. В лабораториях «Филипса» уже разработан и вот-вот будет выпущен в продажу прибор, который совершит революцию в видеотехнике и отправит все нынешние видеомагнитофоны на свалку.

Он будет способен автоматически фиксировать передачи, которые вам нравятся, и круглые сутки сканировать телеканалы, записывая в элементы памяти все то, что соответствует вашему вкусу. Никаких видеокассет не понадобится. Вместе с тем устройство настолько просто в обращении, что с ним сможет справиться даже младенец.

Первые модели могут хранить 16 часов записи, но уже разработаны приборы, где время удвоено, а в недалекой перспективе запись и хранение 1000 часов видеоинформации. Предполагается разработать модели, управляемые голосом и записывающие несколько разных передач одновременно. Кроме того, существует технология, позволяющая автоматически отсеивать при записи надоевшую всем рекламу.

КАК ДАВИД ПОБЕДИЛ ГОЛИАФА? Медицинское трактование известному библейскому мифу попытался дать израильский невропатолог, профессор Университета Бен-Гуриона Владитр Бергииер. Он провел историко-медицинскую экспертизу канонического текста и пришел к выводу, что великан Голиаф ростом в 2,9 м («о шести локтей и пяди») страдал акромегалией – гормональным нарушением, вызвавшим не только быстрый рост, но и сильное ослабление зрения. Так что, не исключено, Голиаф попросту не видел своего противника.

Если это так, то победа Давида сильно обесценивается. Поэтому сообщение ученого вызвало замешательство в среде знатоков Библии в Вечном городе, где сам верховный понтифик любит время от времени вспоминать знаменитый миф.

ШПИОНЫ СТАНОВЯТСЯ АСТРОНОМАМИ. Началось все с того, что несколько молодых астрономов Юго-Западного исследовательского института в Техасе прошли летную подготовку на авиационной баге в Эвардсе (штат Калифорния) и перешли к полетам на переоборудованном двухместном истребителе Ф-18 «Хорнет». В результате этих полетов выяснилось, что из кабины истребителя намного удобнее вести наблюдения за астероидом 2308 «Поликсо», поскольку в верхних слоях атмосфера намного меньше мешает астрономическим наблюдениям. Теперь вошедшие во вкус астрономы пытаются приспособить для своих целей и знаменитый самолет-шпион У-2, способный подниматься на высоту до 23 км.

В то же время выяснилось, что подобные полеты обходятся дешевле, чем запуски специальных астрономических спутников или эксплуатация самолетов-лабораторий, созданных на базе «Боинга-707» или «Боинга-747».

ЖИЗНЬ ОСТАВИТ НАС С НОСОМ? Продолжительность жизни можно увеличить примерно еще на треть, если… не ощущать ее запахов и вкуса. К такому парадоксальному заключению пришли исследователи из университета Сан-Франциско, изучавшие жизнь круглых червей – нематод. Коллектив исследователей под руководством профессора Сиитни Кеньон доказал, что черви способны жить значительно дольше, если у них отключить рецепторы, воспринимающие запахи и вкус пищи – они слишком сильно воздействуют на гормональную систему, вызывая дополнительные стрессы.

Эксперименты показали, что продолжительность жизни червей с отключенной запаховой сигнализацией увеличивается с двух с половиной недель до трех-четырех, что эквивалентно увеличению продолжительности человеческой жизни с 90 до 130 лег. Только что за радость в такой жизни?

ПРИВИВКА… СВЕТОМ. Это только в лесенке поется: «Я уколов не боюсь…» На самом деле мало на свете людей, которым бы доставляла удовольствие подобная процедура, даже если ее делают с помощью современного безыгольного инъектора. А потому, быть может, оказывается не так уж много охотников становиться в очередь за получением своей порции противогриппозной сыворотки.

И вот в НИИ лазерной биологии и медицины Харьковского университета разработали новый метод профилактики гриппа. На запястья пациенту надевают специальные браслеты-световоды, через которые кожу облучают тонким лазерным лучом. Потом светят еще тонким лазерным лучиком на несколько биологически активных точек – и иди гуляй. Сравнительные испытания показали, что после таких сеансов гриппом заболевает лишь 10 процентов школьников или курсантов, в то время как в контрольных группах чихать начинает каждый второй.

Пока сами исследователи толком не знают механизма воздействия лазерного луча на процессы жизнедеятельности организма. Эффект был замечен случайно, когда выяснилось, что пациенты, получавшие лазерные процедуры по поводу иных недугов, переставали болеть гриппом.

В настоящее время новый метод проходит всестороннюю проверку. Если его высокая эффективность подтвердится, то вскоре грипп будут лечить не таблетками да уколами, а лучами. А это, согласитесь, совсем другое дело…

ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Услышать музыку небесных сфер…

… и поймать гравитационные волны надеются в скором будущем ученые Германии.


Эксперимент этот должен начаться в июне 2000 года в небольшой тихой деревушке Рутальд в 15 км к югу от Ганновера. О том, что здесь планируется проведение необычного опыта, свидетельствует лишь необычное для сельской местности сооружение – барак из сборных конструкций с отходящими от него двумя длинными сводчатыми туннелями из гофрированной жести. Цель опытов, как в шутку свидетельствует руководитель руководитель проекта Карлстен Дамстон, сотрудник Института атомной и молекулярной физики при Ганноверском университете, «поимка Нобелевской премии».

Впрочем, пожалуй, если участникам эксперимента действительно удастся зафиксировать гравитационные волны, их работа вполне может быть удостоена этой премии.

Если пользоваться научной терминологией, волны тяготения – это возмущения переменного гравитационного поля, которое излучается ускоренно движущимися (кавитационными массами и, подобно электромагнитному излучению распространяется в пространстве со скоростью света.

Природу этого явления трактует созданная А. Эйнштейном общая теория относительности, которая описывает тяготение как воздействие материи на свойства пространства и времени. Согласно этой теории, тяготение – есть искривление пространственно-временного континуума. Наглядно, так сказать, на пальцах проиллюстрировать, что это такое, практически невозможно. Мы способны представить себе разве что искривленную поверхность. Если, скажем, на растянутое полотнище из резины опустить груз (например, стальной шарик), то мы увидим, как оно прогнется, образовав углубление. Если же такой груз еще и движется, возникают колебания. При этом по полотнищу распространяются волны, подобно тому как по воде разбегаются круги от брошенного в нее камня.

Такая аналогия весьма приблизительна, но все же дает какое-то представление о предмете сегодняшнего разговора.

Поскольку пространство, в отличие от резинового полотнища, обладает, по словам ученых, очень высокой жесткостью, чтобы его искривить, требуются гигантские гравитационные поля, а значит, и массы. Ведь иного источника гравитации, нежели масса, мы пока не знаем.

Долгое время в земных условиях существование гравитационных волн пытались доказать с помощью калиброванных масс. Скажем, в эксперименте американского физика Вебера роль эталонов играли два массивных цилиндра, которые по идее должны были чуть-чуть сместиться друг относительно друга при прохождении волны.

Однако как ни пытались экспериментаторы зафиксировать это «чуть-чуть», им так и не удалось получить бесспорных результатов. Датчики фиксировали что угодно: сотрясения почвы от проехавшего в километре трамвая), сейсмические колебания, но никак не гравитационные волны.

Нынешний этап исследований отличается от предыдущих тем, что исследователи с самого начала настраиваются на фиксирование лишь самых сильных гравитационных всплесков – таких, например, какие случаются при глобальных вселенских катастрофах. Когда, скажем, где-то вспыхнет сверхновая звезда, что на практике означает взрыв очень массивного небесного тела (в сотни, а то и миллионы раз массивнее нашего светила). Соответственно при этом происходит разброс огромных масс и резкие, очень сильные возмущения гравитационного поля. А всплески, вызываемые астрофизическими катастрофами в нашей или соседних галактиках, происходят довольно часто, чуть ли не ежемесячно.

Такая частота повторения события вполне приемлема для физиков-экспериментаторов.

Гораздо хуже другое: длительность такого всплеска составляет порядка 0,001 или даже 0,0001 с. Самая же большая сложность регистрации гравитационных волн заключается в том, что амплитуда смещения датчика даже в этом случае должна лежать, по расчетам, в пределах от 10-19 до 10-21 м! Иными словами, если сверхновая вспыхнет в нашем Млечном Пути, то расстояние между Солнцем и Землей изменится лишь на диаметр одного водородного атома! И чтобы засечь такое смещение, нужно немало потрудиться…

Детектор, монтируемый в окрестностях Ганновера, базируется на лазерных интерферометрах. В самом общем виде схема выглядит так.

Испускаемый лазером луч с помощью специального устройства делится пополам. Оба луча расходятся друг от друга под прямым углом. Каждый из них проходит внутри вакуумной трубы путь длиной 600 м. В конце он отражается от зеркала и возвращается в исходную точку. Накладываясь друг на друга, пришедшие лучи создают интерференционную картину, узор которой сохраняется неизменным до тех пор, пока не меняется расстояние, преодолеваемое лучами. Но если Земля окажется на пути гравитационной волны, теоретически длина одной из вакуумных труб на мгновение чуть-чуть уменьшится, а другой чуть увеличится. Этого должно оказаться достаточно, чтобы интерференционная картина изменилась.

Кроме того, частоты гравитационных волн согласно расчетам должны находиться в звуковом диапазоне. Это обстоятельство навело экспериментаторов на идею транслировать «музыку сфер» через динамики с таким расчетом, чтобы можно было даже на слух воспринять какие-то изменения.

Карлстен Дамстон полагает, что обнаружение гравитационных волн даст ученым дополнительные сведения об окружающем нас мире. Ведь сегодняшние методы изучения Вселенной базируются на регистрации лишь электромагнитного излучения; все на свете телескопы – рентгеновские, оптические или радио – фиксируют только их. А стало быть, мы практически ничего не знаем о тех объектах Вселенной, которые не излучают электромагнитных волн. Быть может, поэтому мы до сих пор так и не можем обнаружить скрытую массу? А ведь согласно вычислениям теоретиков все звезды, галактики, скопления составляют не более 10 процентов от общей массы Вселенной.

Вот бы обнаружить остальное.

Олег СЛАВИН

НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ
Дирижабли завтрашнего дня

Последние лет пятьдесят о дирижабле принято писать только хорошее. Нет недостатка и в грандиозных проектах – от гигантских дирижаблей для перевозки природного газа до ракетоносцев с ядерным двигателем. Однако реально же их используют для рекламы и туризма. Американцы применяют еще несколько дирижаблей для поиска подводных лодок. Вот, пожалуй, и все. Почему?


Самый серьезный недостаток дирижабля – слишком малая скорость. Ни один дирижабль в неподвижном воздухе еще не развивал более 150 км/ч. Поэтому на малых расстояниях его легко побеждает гораздо более дешевый и компактный вертолет. А на больших…

В 30-е годы немецкий дирижабль LZ-127 «Граф Цеппелин» (рис. 1) неоднократно пересекал океан, тратя на это примерно четверо суток. Получалось втрое быстрее, чем на пароходе. Но сегодня этот путь можно проделать на самолете за 8–9 часов.


Рис. 1

Часто говорят о высокой экономичности дирижабля. Но и к этому следует относиться с осторожностью. Он действительно расходует топлива меньше, чем самолет. Но лишь благодаря полету с очень низкой скоростью. При прочих равных условиях мощность, необходимая на преодоление сопротивления воздуха, растет пропорционально кубу скорости.

Если бы мы пожелали увеличить скорость дирижабля в два раза, мощность моторов пришлось бы увеличить в восемь раз. Полеты через океан стали бы невозможны из-за возросшего расхода топлива. И наоборот, даже небольшое снижение скорости заметно повышает экономичность дирижабля.

Построенный немцами в 1917 году дирижабль LZ-104 имел, к примеру, максимальную скорость всего 104 км/ч (рис. 2).


За счет этого заметно снизился расход топлива, и воздушный корабль способен был доставлять 52 т бомб на расстояние 16 000 км!

И стоит поблагодарить судьбу за то, что немцы в годы Первой мировой войны практически не использовали возможности своих военных дирижаблей. В противном случае, если бы каждый из них хоть раз сбросил на Лондон полный груз бомб, столица Англии была бы стерта с лица земли, а прогулка LZ-104 к городам Америки помешала бы вступлению США в войну. Но вернемся к теме.

Существуют традиционные способы снижения аэродинамического сопротивления. Это улучшение формы, создание гладкой поверхности, устранение всех выступающих частей. По этому пути дирижаблестроители идут уже более ста лет и в значительной мере исчерпали его возможности. Тем более что таким способом сопротивление воздуха можно снизить не более чем вдвое. Соответственно может возрасти дальность полета, но скорость увеличится немного. На широкую дорогу это дирижабль не выведет.

Однако выход из положения есть. Нужно использовать принципиально новые методы снижения сопротивления, разработанные в наши дни для самолетов. Строго говоря, их появление связано с работами французского физика и математика Д’Аламбера (1717–1783), доказавшего, что при движении в идеальной сплошной среде, где отсутствует вязкость, сопротивление движению тел равно нулю. Это положение часто называют парадоксом Д'Аламбера.

Сопротивление, встречаемое телами при движении в реальной среде, например воздухе, связано с наличием у него вязкости. Силы вязкости сами по себе очень слабы. Однако они выступают в роли организатора, заставляющего потоки воздуха двигаться таким образом, что при этом возникает сопротивление.

Понять это поможет простой пример.

Сидя в автомобиле во время снегопада, вы наверняка видели, как снежинка, сев на капот автомобиля, медленно, как бы нехотя, ползет к окну. А между тем машина идет с большой скоростью. Почему же ветер не сдувает снежинку? Все дело в силах вязкости. Первый слой воздуха толщиной в одну молекулу притягивается молекулами обтекаемого тела. Он как бы прилипает к нему, его скорость резко падает. Второй слой воздуха прилипает к первому, третий ко второму и… так без конца. А в результате вблизи капота возникает слой воздуха, в котором значительно замедлена скорость. Поэтому и так медленно ползет попавшая в него снежинка.

По мере же удаления от капота скорость воздуха растет. Вся эта область с переменными скоростями носит название пограничного слоя. Если скорость в нем меняется плавно и нигде не равна нулю, сопротивление невелико.

Но случается так, что где-то пограничный слой как бы прилипает к поверхности тела. В этом месте возникают вихри, приводящие к резкому увеличению сопротивления. В таких случаях говорят об отрыве пограничного слоя. У сравнительно небольших крыльев и фюзеляжей самолета это явление возникает лишь при очень высоких скоростях. У дирижаблей благодаря их огромным размерам пограничный слой начинает отрываться даже при самых небольших скоростях. В этом все дело. Если каким-то образом не дать пограничному слою оторваться, сопротивление станет меньше. И здесь строителям дирижаблей есть чему поучиться у самолетостроителей, которые разрабатывают способы управления пограничным слоем уже более полувека и добились немалых успехов.

Вспомнить хотя бы кольцо Тауненда (рис. 3), призванное скорректировать отрыв пограничного слоя на поверхности фюзеляжа самолета, приводящий к значительному росту сопротивления.

Проходящий сквозь него встречный поток прижимается к фюзеляжу и сдувает вялый, разрушенный пограничный слой. Отметим, что здесь впервые тело очень плохой, с аэродинамической точки зрения, формы, коей является фюзеляж с прилепленным к нему мотором, приобрело низкое сопротивление, свойственное удобообтекаемому телу. У дирижабля нарушение обтекаемости начинается примерно на расстоянии первой трети его длины, считая от носа, и тянется до самой кормы на десятки метров. Действие же кольца Тауненда распространяется всего на несколько метров. Поэтому дирижаблю одно кольцо помогло бы слабо. Поставить несколько колец (рис. 4) подряд?


Без серьезного расчета и эксперимента это сделать трудно, мелкие отверстия в обшивке крыла (рис. 5) с помощью компрессора газотурбинного двигателя. При этом на обшивку крыла действовало некоторое избыточное давление. Поэтому этот способ без изменения можно применить лишь на дирижаблях жесткой системы, причем это может резко утяжелить обшивку. Избежать этого можно, если каркас дирижабля сделать из трубок с отверстиями, проходящими через оболочку.


Но, пожалуй, самое интересное решение содержится в конструкции летательного аппарата ЭКИП. Последний раз мы о нем писали давно, поэтому немного напомним.

При проектировании самолетов тон задает аэродинамика. Сначала создается его форма, а уже потом инженеры начинают ломать голову над тем, как сделать ее прочной и легкой, разместить в ней груз, двигатели, экипаж. Группа ученых под руководством профессора Л.Щукина задумала решить эту задачу в противоположном направлении. Новый самолет типа «летающее крыло» будет иметь форму батона – решили они (рис. 6).


В нем можно расположить двигатели, экипаж и любой груз – от колонны танков до стада коров. При этом «батон» получится очень легким и прочным. Единственная проблема – крыло такой формы не сможет летать из-за отрыва пограничного слоя и образования сильнейших завихрений на верхней его поверхности. Эту неприятность ученые смогли устранить при помощи системы управления пограничным слоем УПС.

Вот как она устроена. На верхней поверхности летательного аппарата есть ряд открытых полостей с размещенными в них обтекаемыми телами (рис. 7).


В каждой полости создается кольцевой вихрь, охватывающий обтекаемое тело. Воздушный поток, находящийся в состоянии, близком к срыву, как бы проваливается в вихревую ячейку. После взаимодействия с вихрем между слоями потока восстанавливается соотношение скоростей, необходимое для его дальнейшего движения без отрыва.

Эксперименты показали, что «батон» при наличии подобной системы УПС ведет себя как удобообтекаемое тело до скорости 650 км/ч и, возможно, выше.

Следуя логике конструкции аппарата ЭКИП, мы можем представить себе дирижабль будущего как сферический аэростат, оснащенный системой УПС. При такой форме минимальна площадь поверхности, а значит, и затраты мощности на систему УПС. Вот какие результаты мы могли бы получить. Величайший в мире дирижабль «Гинденбург» имел объем 190 000 куб. м, диаметр 41 м, длину 236 м и площадь поверхности 40 000 кв. м. Равный ему по объему сферический дирижабль имел бы диаметр 68 м при площади поверхности в три раза меньше.

Можно ожидать, что он будет способен летать со скоростью более 300 км/ч на расстояния до 13 000 км, имея на борту около 150 т полезного груза.

А. ИЛЬИН

Рисунки автора

ЛЮБОПЫТНЫЕ ПРОЕКТЫ
Бывает, что и отель летает…

Давно, еще в «ЮТ» № 1 за 1993 г., мы рассказали о проекте «Термоплан», разработанная в Московским авиационном институте под руководством Ю.Ишкова. Но в то время мы и подумать не могли (как, впрочем, и сами авторы проекта), что он получит весьма оригинальное продолжение…


Дж. Хаенгги демонстрирует модель своего воздушного замка на Международной выставке «Брюссель-Эврика-99», где его проект был удостоен серебряной медали.

Станет ли воздушный замок замком в воздухе?

Более 100 лет известно, что некоторые болезни легче лечить, если у больного есть возможность побыть на высоте порядка 2000 м над уровнем моря. Такие знаменитые курорты, как Давос или Сан-Мориц в Швейцарии, обязаны своей славой именно этому обстоятельству.

Но далеко не всюду есть горы, далеко не во всех странах имеется возможность строить санатории на высокогорье. А уж тем более не у всех есть деньги, чтобы съездить в тот же Давос…

Примерно так рассуждал швейцарский инженер и предприниматель Джордж Хаенгги. И придумал, как можно устроить высокогорье в любой местности. Для этого санаторий надо просто поднять за облака на воздушном шаре, а еще лучше – на дирижабле.

Швейцарец попытался представить, как может выглядеть такой «летающий курорт», и выяснил, что подходящий, детально проработанный проект уже существует. А создали его, вы уже догадались, российские авиационные инженеры из МАИ под руководством Юрия Ишкова. Как это часто бывало в истории, два творческих человека работали в одно время над одной и той же идеей, не зная друг о друге.

Оба проекта – «Термоплан» Юрия Ишкова и «Воздушный отель» Джорджа Хаенгги – схожи по дизайну и конструкции. Правда, если Ишков поставил своей целью транспортировку тяжелых грузов на большие расстояния, Хаенгги больше нравилась идея воздушной гостиницы, отеля, который оставался бы в одном и том же районе, наподобие небесной яхты, или в уменьшенном варианте послужил бы домом для одной семьи. То есть проект Хаенгги не предназначен для перевозки грузов, а предполагает статическое использование.

Сюрпризом для обоих авторов, когда я их познакомил, оказалась схожесть их проектов в главном – основным несущим элементом являются емкости с гелием, дополняемые использованием горячих выхлопных газов из работающих двигателей или теплообменников.

Поскольку о «Термоплане» мы достаточно подробно рассказывали, поговорим сегодня подробнее о проекте швейцарца. Этот воздушный замок, летающий санаторий (в оригинале space wellness hotel, короче SWO), сам себя всем обеспечивает, кроме еды для постояльцев. На обращенной к небу поверхности размещены фотоэлементы, дающие энергию для всех нужд, включая двигатели для маневрирования. Вода получается из конденсата (росы, осаждающейся на поверхностях дирижабля), отходы полностью утилизируются.

Вот как будет выглядеть пребывание в таком «воздушном замке».

Вертолет доставит пациента в «приемное отделение» – огромный круглый зал высотой в 60 м и диаметром в 100 м. По периметру зала – входы в пятизвездочный отель на 300 постояльцев, медицинскую клинику, театр, кинозалы, корты для тенниса и сквоша, полноценное поле для гольфа, залы для компьютерных игр, физкультурные залы с тренажерами.

Вы можете в свое удовольствие бегать по специальной дорожке, проложенной по периметру «замка», ее длина превысит 1 км.


Внешний вид и примерное строение летающего отеля».

Цифрами обозначены: 1 – оболочка дирижабля, покрытая фотоэлементами; 2 – двигатели, работающие на электроэнергии; 3 – резервуары с гелием; 4 и 6 – площадки для гольфа, тенниса и других спортивных игр; 5 – портал прибытия с посадочной площадкой для вертолета; 7 – прогулочная зона.


«Замок», как сказано, будет все время висеть в заданном районе. После отдыха постояльца доставит на грешную землю тот же вертолет.

Подобные санатории или гостиницы, только меньших размеров, могут также летать по заданным маршрутам со скоростью порядка 100 км/ч и принимать гостей без помощи вертолета.

Осуществлению этого проекта, по сути, препятствует только отсутствие финансирования – для начала работ требуется около 1 млн. долларов США.

Но это будет самый реальный из воздушных замков, утверждает Джордж Хаенгги. Тем более что использовать подобные конструкции можно не только в качестве летающих госпиталей, но и возить с их помощью туристов в отдаленные точки планеты – например, на Северный и Южный полюса. При желании на таком «летающем острове» можно будет совершать даже кругосветные путешествия…

Юрий МАКАРОВ


    Ваша оценка произведения:

Популярные книги за неделю