355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Артур Орд-Хьюм » Вечное движение. История одной навязчивой идеи » Текст книги (страница 1)
Вечное движение. История одной навязчивой идеи
  • Текст добавлен: 26 сентября 2016, 21:18

Текст книги "Вечное движение. История одной навязчивой идеи"


Автор книги: Артур Орд-Хьюм



сообщить о нарушении

Текущая страница: 1 (всего у книги 13 страниц)

Артур Орд-Хьюм
Вечное движение (История одной навязчивой идеи)

Научная редакция, примечания, комментарии Ю. Л. Полунова.

Предисловие

Работа над этой книгой началась несколько необычно. Изучая историю автоматов и механических музыкальных инструментов (некоторые результаты этих исследований уже опубликованы мною в других книгах), я наталкивался на различные упоминания о вечном движении. Они были столь многочисленны и интригующи и так возбуждали мое любопытство, что я не мог оставить их без внимания. И я начал составлять картотеку источников по проблемам вечного движения. Признаюсь, поначалу меня смущала даже сама идея создания такой картотеки. Ведь весь мой опыт инженера-механика говорил о том, что создание перпетуум мобиле – дело невозможное. Но по мере того как росла моя картотека, я проникался все большим интересом к вечным двигателям, пытаясь проникнуть в самую сущность проблемы.

Когда же несколько лет назад компания Би-би-си обратилась ко мне за помощью в подготовке телепередачи, посвященной вечному движению, я с головой ушел в изучение этого вопроса. Вот тогда-то и пригодилась мне картотека, которую я составлял на протяжении ряда лет.

То, что я обнаружил, изучая литературу, было замечательным, волнующим и очень часто удивительным. Я отыскал описания нескольких таинственных механизмов, устройство которых подобно устройству ряда НЛО (неопознанных летающих объектов) не так-то просто объяснить. Убедился я и в том, что большинство изобретателей вечных двигателей не понимали истинного смысла физических явлений, лежавших в основе их механизмов. Но я узнал также, что множество людей, в том числе и известных в науке, не только искренне верили в осуществимость перпетуум мобиле, но и надеялись получить с его помощью энергию, достаточную для приведения в действие различных машин.

Перед тем как приняться за эту книгу, я долго терзался сомнениями относительно возможного характера изложения материала. Изложить факты без всяких комментариев, создав голый поминальник, и ничего более? А может быть, попытаться провести читателя сквозь историю поисков невозможного, объясняя ему причины краха многочисленных попыток? Я прочитал замечательную книгу Генри Диркса, написанную в прошлом веке и содержащую огромное число сведений о вечных двигателях, и выбрал второй подход.

Вооружившись практическими знаниями инженера, любопытством вечного студента и настроившись на философский лад, я попытался как можно лучше выполнить работу, которую сам на себя взвалил. Я позволил себе отойти от строго хронологического изложения материала и взглянуть на вещи немного шире, чтобы понять, существует ли рядом с нами вечное движение, созданное человеком?

Я хочу предостеречь читателя. Судите о предмете с позиций тех, кто им занимается. Коль авторитет этих людей таков, что на их суждения можно положиться, значит, даже допуская, что авторы заблуждаются, мы должны с полным доверием отнестись к их работе. Вечное движение—проблема серьезная. Это вовсе не та явная глупость, которую некоторые изобретатели преподносят публике. Подобно алхимику, искатель вечного движения находился в плену не собственного невежества, а ограниченных научных знаний своего времени. Эти люди в большинстве своем стремились раздвинуть горизонты науки способом, который казался им наиболее естественным. И происходило это как раз в то время, когда начали быстро расти человеческие знания о самых разнообразных явлениях природы. Некоторым утешением для этих самоотверженных искателей могло служить то обстоятельство, что в двадцатом столетии их мечты стали в известном смысле реальностью.

Необходимо иметь в виду, что во все времена встречались довольно известные популяризаторы науки, чья проницательность оказывалась в плену их собственной удивительной ограниченности. Ведь когда впервые было предложено пересечь океан на пароходе, а не под парусами, не кто иной, как некогда знаменитый доктор Ларднер во всеуслышание заявил: «Нельзя построить пароход столь большого водоизмещения, чтобы запаса угля на его борту хватило бы для плавания через Атлантический океан!»{1}[1]1
  Здесь и далее см. «Примечания и комментарии».


[Закрыть]
.

Но чтобы не вызвать у читателя сомнений по поводу мудрости и дальновидности других наших выдающихся предшественников, я позволю себе процитировать Шарля Луи де Секонда барона Монтескье (1689—1755). Правовед и философ, автор знаменитых «Персидских писем» (1721) проявил глубокую прозорливость, когда писал: «Я повсюду встречаю людей, которые постоянно говорят о себе... Несколько дней назад один такой человек терзал нас разговорами в течение двух часов... но поскольку в этом мире вечного движения не существует, он, наконец, замолчал».

Артур У. Дж. Орд-Хьюм

Введение

Как только человек установил определенные закономерности в протекании простейших механических процессов, его увлекла возможность создания таких машин, которые могли бы работать сами по себе. Но ремесленнику или мастеровому тех далеких времен с их примитивными и незначительными нуждами создание автоматической машинерии казалось скорее одним из повседневных занятий кузнеца и колесника, чем великой и трудно достижимой целью. Вечное движение окружало человека повсюду: солнце вставало и садилось, всходила и заходила луна, менялись времена года, чередовались отливы и приливы морей. Вода и ветер были в избытке и ничего не стоили, и человек это видел. Силы природы действовали повсюду, и это действие само по себе казалось формой вечного движения. Не было ничего удивительного в том, что природные силы заставляли мельницу молоть зерно, а насос непрерывно качать воду, и люди верили, что существует множество самых разнообразных способов совершать работу для человека, но без его участия.

Не удивительно поэтому, что первые проекты машин вечного движения касались мельничного дела, где, как известно, использовались вода и ветер. Мельнику нужно было только установить водяное колесо в постоянно текущем потоке воды, и он получал всю необходимую энергию, не прибегая к помощи лебедок, колес или лошадей. Водяное колесо могло вращать тяжелые жернова и даже тянуть подъемник с мешками зерна до тех пор, пока наступление засухи и другие причины не уменьшали напор воды в потоке.

Но вот математик Архимед (287—212 гг. до н. э.) показал, как поднять воду посредством спирального насоса{2}. И это сразу же сделало достижение цели до смехотворного простым. Мельнику необходимо было лишь привести во вращение архимедов винт – а это легко можно было сделать с помощью колеса – и вечная мельница, казалось, была готова. Действительно, колесо вращало бы винт, винт поднимал бы отработанную на колесе воду из нижнего резервуара в верхний, эта вода вновь заставляла бы вращаться колесо и т. д. – процесс продолжался бы бесконечно. К тому же для вечной мельницы можно было иметь не постоянно текущий источник, а всего лишь пруд с определенным объемом воды, которую по мере надобности можно было перегонять вверх или вниз. К счастью для мельников, запасы воды в водоемах никогда не иссякали. А вот если бы это случилось, стало бы очевидным, что какой-то серьезный и принципиальный дефект препятствует осуществлению столь простой схемы.

Казалось, проблема вечного движения вот– вот будет решена, но неумолимый закон сохранения энергии, о котором тогда ничего еще не знали, постоянно сводил на нет все попытки изобретателей.

Типичный пример преданного искателя вечного движения – честный, простодушный умелец, стремившийся создать механизм, который можно было использовать в домашнем хозяйстве или для нужд семьи. Но был и другой род изобретателей перпетуум мобиле, опрометчиво вступивших на тяжкий путь поисков невозможного. Они создавали механизмы, которые отказывались работать, а потом всю жизнь тратили на поиски средств для завершения работы, с самого начала обреченной на провал. Иллюзии, которыми питались эти изобретения, мешали понять всю тщетность их усилий.

Поисками вечного движения занимались также известные и уважаемые ученые, механики и инженеры. Среди них были Ричард (позднее сэр Ричард) Аркрайт, создатель самопрялки{3}, и Джордж Стефенсон, внесший значительный вклад в усовершенствование конструкции паровоза{4}. Что же касается других более или менее известных, то одни приобретали репутацию сумасшедших, других крах иллюзий толкал на самоубийство, третьи просто становились мизантропами. Были среди них и такие, кто искренне верил в свою святую обязанность раскрыть для блага всего человечества тайну вечного движения и создать устройство, которое бы совершало бесплатную работу. В погоне за химерой тратились целые состояния, а их владельцы так и не смогли понять, как бесконечно далека была от них прекрасная мечта.

Но были во все времена и шарлатаны, причем двух категорий. Одни начинали с честных попыток создать машину вечного движения, но затем осознавали обреченность своих затей и прибегали к различного рода надувательству, чтобы убедить большую часть публики в собственном успехе. Так, очень часто окончательный вариант их модели, выполненный с большим мастерством, содержал искусно спрятанный часовой механизм. Шарлатаны другого рода сразу начинали с обмана, полагаясь на невежество толпы, для которой вечное движение представлялось панацеей от всех бед. Их двигатели – средство выколачивания денег из меценатов. Как правило, эти жулики были талантливыми инженерами, возможно, самыми талантливыми из всех изобретателей вечных двигателей. Ведь в отличие от остальных они с самого начала понимали бесплодность своих поисков и поэтому обманом пытались достичь того, на что их менее способные собратья честно тратили значительные усилия.

С поисками вечного движения связана еще одна категория людей. Это те, которых сенсация и газетная шумиха заставляли вкладывать свои сбережения в сомнительные предприятия: промышленники, банкиры и даже политики, верившие, что они присутствуют при рождении великого открытия, способного совершить переворот в науке и принести им безоговорочное процветание.

Сегодня мы можем лишь посмеяться над той доверчивостью или даже глупостью, с которой наши предшественники относились ко всем этим надуманным проектам. «Tempore mutantur, nos et mutamur in illis» («Времена меняются, и мы меняемся вместе с ними») .

Но осуждать мы их можем только за неспособность понять, что вечное движение не существует в тех формах, в которых они его искали. Обладай они большей широтой интеллекта, они бы увидели то, что в современной науке и технике является общепринятым, и тогда дело могло принять другой оборот.

Современному читателю, живущему в сугубо прагматический век, поиски вечного движения, представленные в виде голых фактов, без исторического фона, могут показаться чуть ли не комичными. Но оглянитесь на несколько веков назад и повремените с оценками. Средневековье. Эпоха пара еще не наступила, и источником энергии служат ветер, вода и рабочий скот. Через дымку времени вы не можете не увидеть, каким реальным представлялось тогда существование вечного движения. И вы поймете простое величие и необходимость поисков перпетуум мобиле.

1. Вечное движение и физика

Попытаемся рассказать о законах природы, исключающих возможность создания перпетуум мобиле.

Постройте машину, которая совершала бы работу, большую, чем сообщенная ей энергия, и вы решите проблему вечного движения.

Чтобы вечный двигатель мог работать, он должен сам себя обеспечивать энергией. Иначе говоря, он должен вырабатывать ее в достаточном количестве, не имея никакого внешнего источника.

Представьте, что нужно рассчитать баланс энергии, затрачиваемой на совершение того или иного вида работы, будь то движение океанского лайнера, или забивание гвоздей, или полет со сверхзвуковой скоростью. В любом случае количество затраченной энергии всегда должно быть равно количеству энергии, произведенной или выделившейся в результате совершения работы. Энергия, которую мы не совсем точно называем потерянной, на самом деле не исчезает. Просто она переходит в иную форму, при этом исключается возможность ее дальнейшего превращения в механическую или электрическую энергию. Так получается оттого, что в результате трения происходит нагревание и часть энергии выделяется в виде тепла. И это, вообще говоря, справедливо для потерь любого вида энергии, ибо они в конечном счете всегда превращаются в тепло.

Эту же мысль можно выразить и иными словами: во всех случаях общая конечная сумма энергии равна ее общей начальной сумме. Энергия не возникает и не исчезает, но переходит в другую форму, иногда малополезную или совсем бесполезную. Например, тепло, выделяемое в двигателе внутреннего сгорания, – ненужный и тем не менее неизбежный продукт превращения энергии. Его можно использовать, скажем, для обогрева салона автомобиля, но сделаем ли мы это или не сделаем – все равно часть работы, совершаемой двигателем, будет тратиться на тепловые потери.

Все, о чем говорилось выше, и представляет собой существо важнейшего закона природы—закона сохранения энергии, или первого начала термодинамики.

Мы уже говорили, что вечный двигатель должен совершать полезную работу, не имея никаких внешних источников энергии. Проще сказать, в нем не должно сжигаться топливо и к нему не должны прикладываться механические усилия. Существует ряд свидетельств, что именно поиски такой не реализуемой на практике машины заложили фундамент механики как науки. Великие ученые прошлого приняли как аксиому невозможность создания перпетуум мобиле и тем помогли пробиться росткам новой науки.

Порой легко доказать негодность того или иного проекта вечного двигателя и тем самым показать, что данный конкретный способ его реализации не приведет к желаемому результату. Но это вовсе не означает, что автоматически исключается возможность построения перпетуум мобиле другими средствами. Поэтому до тех пор, пока не был четко сформулирован закон сохранения энергии, невозможность создания механического вечного двигателя, установленная многовековым опытом, вовсе не означала невозможность создания, скажем, двигателя химического. Конечно, бесплодность поисков вечного движения признавалась еще до того, как этот закон стал достоянием науки. Однако это мнение основывалось не на некоторых общих положениях, а на анализе принципа действия отдельных «машин вечного движения». Тщательное рассмотрение очередного проекта всегда обнаруживало какие-нибудь теоретические ошибки, из-за которых двигатель не мог работать, а претензии изобретателя оказывались несостоятельными.

В разработку общепринятого ныне критерия неосуществимости вечного движения, провозглашающего невозможность создания энергии из ничего, внесли свой вклад философы, математики, инженеры. Закон сохранения энергии стал неизбежным препятствием для изобретателей перпетуум мобиле. И все попытки преодолеть это препятствие кончались крахом.

Но вскоре было сформулировано еще общее положение, получившее название второго начала термодинамики. Это начало, говоря несколько упрощенно, гласит, что тепло не может увеличиваться самопроизвольно; иными словами, если более нагретое тело привести в контакт с менее нагретым, то будет наблюдаться выравнивание температур, а не увеличение их разности.

Это явление (выравнивание температур) долгое время не имело никакого теоретического объяснения. Впервые сформулированное немецким физиком Рудольфом Юлиусом Эммануэлем Клаузиусом (1822—1888), второе начало термодинамики носило чисто эмпирический характер. Правда, указывалось на аналогию между изменением температуры контактируемых тел и потоком воды, текущей вниз под действием собственной тяжести, но ситуация осложнялась тем, что не удавалось установить, какие же внешние силы управляют этим тепловым процессом. Поэтому, хотя эксперимент всегда обнаруживал уменьшение температуры, вплоть до последней четверти прошлого столетия высказывались сомнения относительно всеобщности второго начала термодинамики. Более того, некоторые ученые пытались опытным путем доказать, что существуют случаи, нарушающие справедливость этого начала.

В 1875 году вышла в свет знаменитая «Теория теплоты» Максвелла{5}, в которой утверждалось, что характер действия второго начала термодинамики может быть уточнен следующим мысленным экспериментом. Если представить себе некое устройство, которое сортировало бы молекулы по их скорости, то можно было бы без затраты работы и не нарушая закона сохранения энергии нагревать одну половину некоторого объема газа и охлаждать вторую. Результатом этого мысленного эксперимента и будет увеличение тепла в одной части сосуда с газом и уменьшение в другой. Видоизмененное таким образом второе начало термодинамики приобрело вероятностный, а не детерминированный характер.

В конце прошлого столетия физики Больцман{6} и Планк{7} заложили научные основы этого вопроса. Больцман, в частности, показал, что самопроизвольное выравнивание температур двух тел есть результат перехода молекул этих тел из менее вероятного в более вероятное состояние. Гипотетическая передача тепла в направлении от менее нагретого тела к более нагретому в свете этого доказательства возможна, но маловероятна.

Это положение можно проиллюстрировать простым примером. Закон диффузии газов очень близок к закону теплопереноса, поскольку в процессе диффузии молекулы газов стремятся распределиться равномерно. Если на газ не воздействовать извне, то будет наблюдаться тенденция к выравниванию его плотности. Было бы по меньшей мере странно, если бы газ, первоначально обладавший равномерной плотностью, вдруг стал бы скапливаться в одной части сосуда, оставляя при этом незаполненное пространство в другой его части. Аналогичное весьма маловероятное явление происходило бы с теплом, переходящим от менее нагретого к более нагретому телу.

Давайте теперь предположим, что существует крохотный сосуд, вмещающий всего две молекулы, по одной в каждой половине сосуда. Молекулы эти находятся в непрерывном движении, ударяясь о стенки и беспорядочно проскакивая вперед и назад из одной части сосуда в другую. При этом, очевидно, существуют четыре возможных варианта расположения молекул в пространстве:

А – В, В – А, АВ ← 0, 0 → АВ.

В двух вариантах из четырех в одной половине сосуда возникает вакуум. Следовательно, вероятность такого события равна 1/2, и можно ожидать, что половину времени одна часть сосуда будет пустой. С увеличением числа молекул вероятность появления вакуума резко падает. При общем числе молекул, равном n, вероятность того, что половина сосуда окажется пустой, составит (1/2)n-1. Практически число молекул огромно, поэтому вероятность такого события близка к нулю. Так, для реального случая, когда разница давлений в двух половинках одного кубического сантиметра газа не превышает одного процента, вероятность возникновения вакуума в какой-нибудь половине этого кубика ничтожно мала; такое событие может произойти один раз за (1010)18 лет!

И хотя эти рассуждения выглядят вполне впечатляющими, одно обстоятельство все же необходимо пояснить. Не следует думать, что если возникновение вакуума—событие настолько редкое, то нам действительно придется ждать его появления многие миллионы лет. Вакуум может создаться и через минуту! Более того, вакуум может возникнуть дважды в течение минуты, но на очень короткое время.

Доктор Хейл из бюро стандартов США предположил, что подобная система доказательств могла бы привести нас к аналогичному заключению о возможности самопроизвольного появления заметной разницы температур в некоем объеме газа. Известно, что температура газа определяется скоростью движения его молекул. При температуре, которая считается постоянной, скорости отдельных молекул газа далеко не одинаковы. Однако все они статистически распределены около той средней величины, которая всегда остается неизменной.

Давайте вновь рассмотрим микроскопический сосуд, в котором находится всего четыре молекулы. Пусть на этот раз две молекулы F1 и F2 быстрые, а две другие молекулы S1 и S2 медленные.

Допуская, что изменений в плотности газа нет, мы получим шесть различных вариантов расположения молекул в сосуде:

Первые четыре варианта—это случаи, когда в обеих половинах сосуда температура газа одинакова, поскольку современные измерительные приборы дают ее усредненное значение. В двух последних вариантах наблюдается разница температур; вероятность их возникновения для четырех молекул равна 1/3.

С увеличением числа молекул вероятность появления сколько-нибудь заметной разницы температур в двух частях нашего гипотетического сосуда резко уменьшается. Следует также иметь в виду, что в любом объеме газа, температуру которого мы в состоянии измерить или проконтролировать, температура каждой отдельной весьма малой его части постоянно колеблется относительно градуировочной кривой прибора, и в целом газ столь же неоднороден по температуре, как и поверхность океана не является абсолютно ровной.

Итак, вероятность появления заметной разницы температур в газе очень мала. Но все же она существует, и, значит, следует не только признать возможность перехода тепла от менее нагретого тела к более нагретому, но и согласиться с тем, что такой переход непрерывно осуществляется, правда, в столь незначительных масштабах, что мы вряд ли сможем его наблюдать. Поэтому, как утверждал немецкий философ Карл Христиан Планк (1819—1880){8}, существует вероятность, хотя и очень незначительная, что в чайнике, помещенном над огнем, замерзнет вода.

Признание учеными возможности, во-первых, перехода тепла от менее нагретого тела к более нагретому и, во-вторых, возникновения при этом незначительного, но все же заметного изменения температуры и плотности послужило основанием для дальнейших рассуждений. Возник вопрос о том, нельзя ли создать устройство, в котором в результате подобных изменений постепенно увеличивался бы перепад температур, за счет которого можно было бы в дальнейшем совершать полезную работу? Вопрос этот возник лет восемьдесят назад, а само это гипотетическое устройство вошло в науку под названием вечного двигателя второго рода. Такое название оно получило потому, что должно было совершать работу, не вырабатывая энергии и вопреки второму началу термодинамики.

Проект устройства был сперва предложен парижанином Липпманом в 1900 году, а затем в 1907 году Сведбергом из города Упсала (Швеция). В 1912 году Смолуховский{9} опубликовал развернутое теоретическое обсуждение данной проблемы. Он показал, что вряд ли стоит надеяться, будто с помощью устройства, содержащего молекулы газа, удастся накапливать эти столь редкие «отступления» от второго начала, поскольку любое подобное устройство само по себе будет подвержено изменениям на молекулярном уровне. Постоянно происходящее перераспределение скоростей движения молекул уничтожит все перепады температуры, которые предполагалось накапливать в устройстве и которые принципиально необходимы для его работы.

Это доказательство представляется весьма убедительным, хотя и обескураживающим. Замечателен вывод, вытекающий из него: второе начало термодинамики для больших промежутков времени справедливо лишь в статистическом смысле.

Интересно, что спустя тринадцать лет, в марте 1925 года, выступая перед сотрудниками американского бюро стандартов, профессор Дебай{10} заявил: для согласования явления интерференции света с квантовой теорией необходимо допустить, что закон сохранения энергии верен только в статистическом смысле. По его мнению, в очень короткие промежутки времени энергия может создаваться, а на протяжении длительного времени ее среднее значение будет оставаться неизменным. В предположении Дебая содержится скрытый намек на то, что вечное движение первого рода, то есть истинное создание энергии, представляет собой некую «научную вероятность» и даже «возможность».

Поиски вечного движения можно отнести к числу тех научных заблуждений, которые пришли на смену опытам алхимиков и построениям квадратуристов{11}. Однако столетия, в течение которых умы ученых мужей были заняты подобными тщетными исканиями, обогатили науку знаниями, куда более ценными, чем цели, преследуемые этими фанатиками. Вот что писал по этому поводу в своей «Теории теплоты» Престон: «Алхимики сделали для химии как науки то же, что изобретатели вечных двигателей для натурфилософии. Их поиски неизбежно привели к открытиям величайшей теоретической и практической важности».

Одним из первых осознал важность проблемы вечного движения для экспериментальной науки Симон Стевин, родившийся в 1548 году в Брюгге{12}. Этот великий математик был также человеком практики: среди его изобретений, относящихся к началу XVII века, есть повозка под парусами, на которой он катался вместе с друзьями по побережью Нидерландов. Стевин был ярым сторонником десятичной денежной системы и десятичных дробей (напомним, что эти дроби тогда еще не получили повсеместного применения в практике повседневных вычислений); он ввел в физику понятие устойчивого и неустойчивого равновесия. Однако наиболее важным его достижением в контексте данной книги является доказательство закона равновесия тел на наклонной плоскости, которое он получил, показав, что вечного движения не существует{13}.

Рис. 1. Стевин показал, что четырнадцать одинаковых шаров, соединенных однородным шнуром, так располагаются на треугольной раме ABC, что четыре шара, лежащие на наклонной плоскости АС рамы, и два шара, лежащие на плоскости CB рамы, уравновешиваются восемью шарами на кривой AEB.

Его рассуждения сводились к следующему. Вообразим, что на гибкий шнур, соединенный в кольцо, на равном расстоянии друг от друга нанизано четырнадцать шаров, одинаковых по весу. Шнур подвешен на подставку треугольной формы, состоящую из двух неравных наклонных плоскостей и одного общего горизонтального основания. Не нарушая общности рассуждений, положим ради простоты, что AC = 2BC, а на участке АЕВ шнура расположено восемь шаров. При этом возможны два случая: либо шары находятся в состоянии равновесия, либо равновесие отсутствует. В последнем случае начнется движение шаров, которое, однако, не изменит их первоначального расположения на подставке. На участке АЕВ всегда будет восемь шаров, на плоскости АС – четыре, а на плоскости ВС – два. Следовательно, движение такой системы будет непрерывным, иными словами, вечным. Стевин не только не допускал этого, но считал нарушение равновесия в таких условиях совершенно невозможным. В своей книге по теории наклонных плоскостей, опубликованной в конце шестнадцатого столетия, он подробно рассмотрел эту проблему. Прежде всего он показал, что при удалении восьми шаров с участка AEB равновесие не нарушается, поскольку четыре шара на кривой АЕ уравновешивают четыре шара на кривой ЕВ. Именно по этой причине и сохраняется равновесие между четырьмя шарами на большей плоскости (АС) и двумя шарами на меньшей (СВ). Если даже расположить плоскость СВ вертикально так, что останется только одна наклонная плоскость АС, условие равновесия будет по-прежнему выполняться. Таким образом, мы нашли, что соотношение сумм весов шаров должно быть таким же, как соотношение между длинами плоскостей, то есть 4×2 = АС×ВС. Если теперь принять сумму весов двух шаров за действующую силу, а сумму весов четырех шаров за противодействующую, то получится следующая пропорция:

Это хорошо известное условие равновесия сил на наклонной плоскости, когда направление действующей силы параллельно наклонной плоскости.

Эрнст Мах (1838—1916), австрийский физик и популяризатор науки, высоко ценил труды Стевина. Однако Мах считал, что в большинстве своем выводы фламандского ученого основаны на чисто эмпирических наблюдениях.

Вот что писал он по этому поводу в своей «Механике»: «Совершенно ясно, что в исходных предположениях Стевина о неподвижности бесконечной цепи содержатся утверждения чисто интуитивного характера. Он сам верит, и мы верим вместе с ним, что движение в подобных условиях никогда и никем не наблюдалось, что оно просто не существует. Это утверждение столь логично, что мы принимаем все вытекающие из него выводы относительно закона равновесия. Доводы Стевина впечатляют своей оригинальностью, а результаты его рассуждений содержательнее первоначальных предположений».

Рис. 2.

Другим ученым, отрицавшим возможность существования вечного движения, был Галилей (1564—1642). Это ясно видно из его работы, посвященной сравнению движения тел по наклонной плоскости с их свободным падением. Он предположил, что скорость, приобретаемая телом при движении из точки А в точку В (если пренебречь силой трения), должна быть равна скорости тела в точке С при его свободном падении из точки А. В противном случае, доказывал Галилей, шар, двигаясь вверх по наклонной плоскости, подымался бы выше того уровня, с которого он скатился, независимо от наклона плоскости и собственного веса. Однако чисто теоретические рассуждения не удовлетворяли первоклассного экспериментатора. Он решил проверить свои выводы на практике. Схема эксперимента, который осуществил Галилей, изображена на рис. 3. Один конец гибкого шнура привязан к гвоздю, вбитому, в стену, на другом конце подвешен тяжелый шар.

Поднимая шар маятника из положения М в положение А так, чтобы при этом сохранялось натяжение нити, а затем отпуская его, Галилей установил, что шар поднимается на ту же высоту по другую сторону от вертикальной линии. Небольшое расхождение высот он отнес за счет сопротивления воздуха.

Рис. 3. Схема эксперимента Галилея.

Затем он видоизменил эксперимент. В точке X справа от вертикально висящего шнура в стену вбивался еще один гвоздь. Теперь шар описывал дугу АМ, а когда шнур зацеплялся о гвоздь, часть шнура СХ прекращала движение, и шар описывал новую дугу МК. Третий гвоздь вбивался ниже точки X, в точке Y, и эксперимент возобновлялся. На этот раз шар, как и раньше, сперва описывал дугу АМ, а затем новую дугу MG. Ученый установил, что каждый шар поднимался на одну и ту же высоту (то есть достигал уровня горизонтальной линии АВ). Следовательно, наклон плоскости (см. рис. 2) не влиял на скорость тела. И хотя скорость, приобретаемая при движении тела из A в С, равна скорости, приобретаемой при движении из A в В, из этого не следовало, что время движения из А в В равно времени движения из А в С.

Вслед за Галилеем Марен Мерсенн (1588—1648){14} категорически отрицал возможность существования вечного движения, а все попытки построить вечный механизм сравнивал с поисками алхимиками философского камня.


    Ваша оценка произведения:

Популярные книги за неделю