355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Артур Чарльз Кларк » НФ: Альманах научной фантастики. Вып. 1 (1964) » Текст книги (страница 21)
НФ: Альманах научной фантастики. Вып. 1 (1964)
  • Текст добавлен: 29 сентября 2016, 01:53

Текст книги "НФ: Альманах научной фантастики. Вып. 1 (1964)"


Автор книги: Артур Чарльз Кларк


Соавторы: Кобо Абэ,Еремей Парнов,Север Гансовский,Михаил Емцев,Геннадий Гор,Ариадна Громова,В. Шибнев,Энн Гриффит,Виктор Комаров,Владимир Волков
сообщить о нарушении

Текущая страница: 21 (всего у книги 22 страниц)

Человечество пробьется через все препятствия к свободе и счастью. И, хоть борьба предстоит трудная, опасная, долгая, но зато человечество воспитается в этой борьбе, станет сильней, умней, справедливей. Счастливое будущее, о котором мы мечтаем, не возникнет искусственным путем, – ни прививки миролюбия, ни усыпляющие газы не помогут создать подлинно свободный и справедливый мир. И не избранное меньшинство, – пусть самое прекрасное и благородное! – а все человечество будет завоевывать себе свободу и строить новую жизнь.

 
Никто не даст нам избавленья —
Ни бог, ни царь и ни герой!
Добьемся мы освобожденья
Своею собственной рукой!
 

Эти слова «Интернационала» не потеряли и не потеряют своего значения, пока не завершится победой последний, решительный бой человечества за настоящую жизнь, достойную разумных существ, за мир, свободу и справедливость на всей нашей прекрасной планете.

Возможно ли?
БИОХИМИЯ БЕССМЕРТИЯ

Когда читаешь фантастическое произведение, в котором затрагиваются те или иные проблемы науки, обычно возникает вопрос: насколько реально и допустимо решение научной задачи, предложенное автором? Может ли вообще такое быть? Есть ли основание надеяться, что когда-нибудь, пусть не сегодня и не завтра, а о самом отдаленном будущем человечество найдет отгадку такой-то тайны природы и сделает это именно тем путем, какой предсказывает автор?

В повести «Бунт тридцати триллионов» рассмотрен ряд интереснейших научных проблем, связанных с биохимией будущего. Главная из них – проблема жизни и смерти. Человек не может примириться со смертью. Смерть – это парадокс. Несоответствие возможностей могучего немеркнущего разума и слабого смертного тела давно уже потрясает воображение людей. Даже сегодня, когда медицина достигла невиданных доныне высот и совершенства, жизнь очень часто утекает по незаметным для человеческого глаза каналам, и люди не могут удержать ее… Проблему жизни и смерти по праву следует считать самой волнующей и самой драматической из всех, которые когда-либо стояли перед людьми.

Название повести «Бунт тридцати триллионов» не случайно. Дело в том, что человеческий организм состоит из десятков триллионов клеток. Точное число назвать трудно, но в среднем 30 триллионов можно считать значением, близким к истине. И каждая клетка несет в себе чудесное вещество наследственности.

Авторы «Бунта» не предлагают какого-либо окончательного решения этих вопросов, что вполне закономерно. Слишком темна и слишком сложна сейчас эта область знания. Но они предсказывают момент, когда наука раскроет тайну жизни и человек сможет управлять процессами, протекающими в живом организме. Молекулу ДНК, извлеченную из клеток таинственного сордон-гнохского чудовища, обвивает третья спираль, которая спасает организм от мутагенного воздействия среды и делает живое существо практически бессмертным.

Есть ли в современной науке если не предпосылки, то хотя бы намек на такое фантастическое решение проблемы жизни и смерти, какое предлагают авторы? Оказывается, да. Но прежде, чем говорить об этом, нам придется совершить небольшой экскурс в область молекулярной биологии, ее законов и особенностей.

Живой организм – это единая система бесконечно большого числа клеток. В каждой из них осуществляются сложнейшие химические реакции, законы которых и по сей день известны далеко не полностью. Но какому бы органу живого организма ни принадлежала та или иная клетка, в ней, как в фокусе, сконцентрированы общие, основные процессы жизни. Нарушение их приводит к гибели клетки, а следовательно, и организма. В клетке заложены и особые материальные вещества – гены, хранящие план развития и жизни организма. Они заранее предопределяют и такой решающий момент, как быстротечность или же долговечность жизни.

Клетка – это первая живая ячейка, в которой осуществляется синтез белка по определенной, безотказно действующей схеме. Постоянное обновление, или, как еще говорят, воспроизводство белковых тел: гормонов, ферментов, антител и многого другого, объясняется тем, что они как бы печатаются с определенных шаблонов, которые присутствуют в клетке. Главным элементом такого шаблона является дезоксирибонуклеиновая кислота. Биохимические процессы в клетке протекают с участием биокатализаторов – ферментов. Клетка располагает специальными «»биохимическими машинами» – поистине удивительными «сооружениями», которые ведают утилизацией и переносом энергии в нужных для клетки направлениях.

Понятие «живой» в нашем сознании неотделимо от белка. Точно так же обстоит дело и с понятием «клетка». Клетка тоже неотделима от белковых тел, так как все биохимические процессы, проходящие в ней, связаны с одним из видов белка – ферментами.

Белки представляют собой высокомолекулярные полимеры, построенные из аминокислот. Хотя аминокислот только 20, но число возможных комбинаций из этих своеобразных кубиков поистине гигантское, особенно если учесть, что молекулярный вес их колеблется от 4000 до 100000. Этим и объясняется все многообразие белковых соединений в живой природе. Молекула белка имеет очень сложную структуру. Ее разделяют на первичную, вторичную и третичную. Если представить это образно, то первичная структура молекулы белка может быть изображена проволокой, на которой в виде разноцветных бусинок в определенном порядке нанизаны аминокислоты. Если из таких нанизанных на проволоку бус свернуть спираль, мы получим уже вторичную структуру белка. И, наконец, сделав из этой длинной спирали какую-либо фигуру, мы воспроизведем уже третичную структуру белковой молекулы.

Естественно может возникнуть вопрос, а так ли это?

Всего лишь несколько десятилетий тому назад подобная схема была бы плодом беспочвенной фантазии, но сегодня благодаря общему прогрессу науки в различных областях, благодаря совместным усилиям химиков, физиков и биологов удалось не только доказать строение белковой молекулы, но и «увидеть» ее с помощью рентгеновских лучей. Это, пожалуй, одно из самых изумительных открытий нашего века. Химики научились расщеплять высокомолекулярную белковую молекулу на сравнительно короткие фрагменты. Затем, изучив порядок расположения в них аминокислот, смогли получить первичную структуру белка.

Физики, облучая рентгеновскими лучами кристаллический белок, сумели увидеть как бы объемную картину атомов белка, что позволило уже судить о самом облике гигантской молекулы. Так, сначала удалось, например, «увидеть» лишь общие контуры молекулы белка миоглобина (мышечный гемоглобин), а затем, когда была достигнута более высокая мощность прибора, были исследованы и спиральные участки молекулы.

На решение таких задач ученого толкает далеко не праздное любопытство, а крайняя необходимость. Все дело в том, что молекула фермента способна осуществлять в организме животного или в колбе исследователя те или иные процессы только до тех пор, пока она сохраняет свою специфическую третичную структуру. И стоит ее хоть очень немного нарушить, например, воздействием температуры, растворителями, излучениями или какими-либо химическими веществами, как молекула фермента теряет свою каталитическую активность. Нужно отметить, что при этом не нарушается не только первичная, но и вторичная структура молекулы. Вот почему проблема третичной структуры белка представляется очень важной.

Однако весьма существенную роль играет и первичная структура белковой молекулы. Вот пример. В зонах малярии на побережье Средиземного моря, в Африке и Азии широко распространено заболевание крови, так называемая серповидная анемия. Страдающие этим тяжелым недугом, как правило, невосприимчивы к малярии.

Недавно выяснилось, что это заболевание может быть отнесено к «молекулярным болезням». Оно связано с тем, что в крови больного, в молекуле гемоглобина нарушается порядок расположения отдельных аминокислот. Совсем небольшое нарушение, но оно резко изменяет ход процессов обмена живого организма. Такое как будто бы незначительное изменение первичной структуры белка вызывает сильное потрясение всего организма. Чем же вызываются такие изменения в молекулярной структуре белка? Как это ни поразительно, но виновен в этом сам организм. В борьбе с малярией организм перестраивает молекулу гемоглобина таким образом, чтобы сделать ее нечувствительной к ядовитым ферментам, которые вырабатываются плазмодием. Эта перестройка и приводит, по сути дела, к ослаблению и, в конечном счете, к гибели всего организма.

В клетке все процессы взаимосвязаны, и нарушение в одном месте того или иного, биохимического процесса серьезным образом сказывается на всей жизнедеятельности.

Приведенный случай ярко иллюстрирует момент, когда клетка, борясь с токсинами плазмодия, вынуждена «подправить» свои «матрицы» и тем самым нарушить воспроизведение нормального гемоглобина.

Разумеется, это лишь наиболее яркий случай такого влияния, которое в конечном счете приводит к вымиранию данной генетической ветви. Однако способностью нарушать «матрицы» клетки, которыми являются дезоксиробонуклеиновые и рибонуклеиновые кислоты, или, как еще это называют, способностью быть мутагенами, обладают и другие, часто очень простые соединения, а также лучистая энергия. При воздействии на живой организм очень малых количеств таких материалов, в синтезирующем аппарате клетки постепенно как бы начинают накапливаться дефекты. Точнее, если на первых стадиях жизни здорового организма процесс синтеза протекает постоянно однозначно и стереотипно, то со временем, когда нарушается структура отдельных участков «матриц», начинают синтезироваться белки иного состава. И тогда они не могут нормально функционировать.

В течение жизни в организме человека накапливается все больше белков с измененной структурой, что со временем приводит к старению организма и смерти.

Возникает вопрос: а нельзя ли как-то уберечь организм от воздействия вредных веществ на «матрицы» клетки или каким-то образом сильно затормозить их вырождение и тем самым значительно продлить жизнь человека? Этот вопрос чрезвычайно сложен. Сейчас нет пока реальных подходов к этой проблеме. И это вызвано скорее не фантастичностью самой задачи, а тем, что мы еще очень и очень мало знаем о процессах, проходящих в клетках, о ее энергетических ресурсах, о ее генах. Дезоксирибонуклеиновая кислота (ДНК) является материальным носителем наследственности. ДНК регулирует синтез ферментов, создавая их первичную, вторичную и третичную структуру. Этот синтез осуществим через посредничество рибонуклеиновой кислоты (РНК). Изменения в ДНК, как сказано выше, вызовут изменение структуры синтезируемого фермента.

Однако не каждое воздействие на ДНК приводит к изменению структуры фермента. Более того, сама природа как бы постаралась защитить от каких-либо воздействий носитель наследственности.

В ядрах спермиев находят так называемые нуклеопротамины, которые представляют собой комплекс ДНК и белка протамина (у рыб) или гистона (у высших животных). Этот комплекс достаточно прочный. Следует считать, что появление протаминов и гистонов в процессе эволюции, очевидно, не случайно, поскольку эти белки, вплетенные в ДНК, улучшают пространственную упаковку молекулы.

Подобная стабилизация молекулы, несомненно, привела к лучшему закреплению заложенной в ней информации.

Таким образом, сама природа в ходе эволюции показывает возможность предохранения наследственной информации от разрушающего действия мутагенов. Как этого будет достигать человек, сейчас сказать трудно. Но мечта о победе над старостью, над увеличением продолжительности человеческой жизни будет вечно жива в людях.

В повести «Бунт тридцати триллионов» поднимается еще целый ряд интересных научных и философских вопросов.

Так, фантастическая реализация химической памяти, заключенной в клетках человеческого тела, происходящая в церебротроне, имеет своим достаточным научным основанием изящные эксперименты биолога Макконела с червем – планарией (об этих экспериментах можно прочесть в четвертом номере журнала «Наука и жизнь» за 1963 год).

Решение этих вопросов принадлежит науке будущего, она откроет перед человечеством новые возможности и блестящие перспективы. Но фундамент будущих открытий закладывается в наши дни.

В. Шибнев, кандидат химических наук

Возможно ли?
ТАЙНА КАШАЛОТА

14 августа. 1884 года лондонская «Таймс» поместила небольшую заметку. Это было первое сообщение о нападении кашалота на подводный кабель связи. С тех пор прошло немало лет, и работников кабельных судов, точно так же, как и океанологов, уже не удивляют проделки исполинских млекопитающих.

Чем же объяснить такое странное поведение кашалотов? Многие мили проплывают они над самым дном в поисках добычи. И вдруг животное замечает длинного «морского змея». Вероятней всего, киты начинают принимать кабель за щупальца извечного своего врага – гигантского кальмара. Кашалот бросается в атаку. Захватив кабель нижней челюстью, он пытается сначала раскусить его, потом разорвать. Но не тут-то было. Морской кабель связи – вещь чрезвычайно прочная. Кашалот рвется вверх, в стороны, вздымает облака мути и окончательно запутывается в кабеле. Лишь однажды колоссальному кашалоту длиной в двадцать один метр удалось разорвать кабель.

Но не в борьбе с кабелем скрыта величайшая тайна кашалотов, которую ученые решили во что бы то ни стало раскрыть. В сущности, мы бы вообще могли не рассказывать о единоборстве морского исполина с неодушевленным хозяйством международного телеграфа, если бы это единоборство не явилось ярчайшей иллюстрацией к одному весьма интересному выводу. Дело в том, что кабели прокладываются иногда на весьма солидных глубинах – две-три тысячи и более метров.

А поскольку кашалот становится их пленником, то мы можем сделать один-единственный вывод: животное способно опуститься на такие глубины.

Больше ничего нам и не остается, как удивляться изумительной способности кашалотов выдерживать такт колоссальные давления. Достаточно сказать, что на глубине двух тысяч метров вода давит на каждый квадратный сантиметр поверхности с силой в двести килограммов. Это в двести раз больше, чем на поверхности! Никому из представителей наземных млекопитающих не приходится встречаться с такими условиями. На первый взгляд кажется, что глубины расплющат в лепешку даже такого гиганта, как кашалот. Но на деле этого не случается. А почему?

Долгое время среди ученых господствовало, мнение, что представители семейства китовых каким-то образом умеют «защитить» свое тело от страшного давления океанских бездн. Считалось, что когда кит ныряет, то его внутренние органы или вообще защищены от внешнего давления, или же вода давит на них с силой, не превышающей пяти-шести атмосфер.

Сейчас очевидно, что такие предположения ни в коей мере не соответствуют истине. Действительно, разве могут мускульные ткани, как бы сильно они ни были напряжены, выдержать давление, которому не могут противостоять даже стальные обшивки подводных лодок? Недаром ведь ни подводным лодкам, ни водолазам, одетым в стальной тяжелый скафандр, не удается опуститься ниже трехсот пятидесяти метров.

Эту роковую границу могут преодолеть лишь специально оборудованные и защищенные батискафы.

Но это хотя и убедительный, но все-таки в какой-то мере косвенный довод. Сомнения остаются. Кто знает, а может быть, в воде мускулы кашалота крепче стальных?

Чтобы рассеять и эти сомнения, приведем еще один довод. В самом деле, не может быть никаких сомнений в том, что находящаяся в поверхностных сосудах кожи и ротовой полости кровь испытывает давление, равное внешнему гидростатическому. Не так ли? Но система кровообращения едина, и мы можем применять к ней знакомый со школьной скамьи закон сообщающихся сосудов. Из этого закона следует, что во всей кровеносной системе, во всех внутренних органах кашалота или кита должно установиться гидростатическое давление такое же, как и в поверхностных сосудах.

Рассчитывая на особенно упорных скептиков, можно привести один довод. Хорошо известно, что кашалот охотится на глубине сотен метров и проглатывает там своих жертв: рыб, осьминогов, кальмаров, в теле которых господствует гидростатическое давление. Но это значит, что в желудке и в кишечнике кита давление тоже должно быть уравновешено с внешним. Иначе каждая проглоченная рыба разорвется внутри бедного кашалота, как граната. Моряки знают, как лопается быстро вытащенный на поверхность глубоководный обитатель.

Так, нам остается лишь констатировать факт, что кашалот способен противостоять колоссальным давлениям. Исходя из этого факта, сотрудник Института морфологии животных имени А. Н. Северцова АН СССР кандидат биологических наук А. В. Яблоков высказал исключительно смелую и чрезвычайно заманчивую гипотезу. Суть этой гипотезы можно уместить в коротком вопросительном предложении: «Если кашалот может погружаться на многие сотни метров и безболезненно переносить возникающие при этом давления, то почему этого не может сделать человек?»

Неожиданный вопрос, не правда ли? Неожиданный, но вполне закономерный и отнюдь не праздный.

В сущности, между строением тела кашалота и тела человека нет никаких принципиальных различий. Мы с вами принадлежим к тому же классу млекопитающих, что и киты. Просто мы стоим на разных ступеньках эволюционного дерева. Далекие предки человека покинули воду, а предки кита остались в этой колыбели жизни. Не удивительно поэтому, что мы утратили, а киты приобрели способность приспосабливаться к внешнему давлению. Посмотрим, какие приспособления позволяют глубоко ныряющим китам и кашалотам долго оставаться в глубине, не возобновляя запаса воздуха. Эти приспособления довольно хорошо изучены. В сущности, их можно разделить на два типа. Первый – хитроумная система клапанов, препятствующих выжиманию воздуха из легких на глубине. Второй – колоссальные запасы особого дыхательного пигмента – миоглобина, связывающего кислород в мышцах. Если вам когда-нибудь придется побывать на разделочной площадке какого-нибудь китокомбината, то вы обратите, внимание на то, что мясо исполинских животных очень темное. Это работа миоглобина.

Когда кит находится на поверхности, то шум его дыхания слышен за много метров. Опытный китобой может обнаружить кита в полной темноте, ориентируясь только на этот шум. Кит дышит, кит вентилирует легкие. Но не только легкие запасают кислород; весь организм тоже. Поэтому мышцы долгое время не нуждаются в притоке свежей крови, несущей живительный газ. Здесь-то мы и подходим непосредственно к научной идее рассказа «Соприкосновенье».

Подобно китам, герои рассказа долгое время могли оставаться под водой, потому что кислород для дыхания был предусмотрительно запасен в молекулах оксимиоглобина. А тот кислород, который находится в крови, идет только на снабжение центральной нервной системы. Какое бы давление ни господствовало в глубинах, организму оно не страшно. Ведь ткани тела, как известно, состоят почти из одной только жидкости, а жидкости несжимаемы!

Внутренние органы тоже будут работать нормально на любой глубине.

Чтобы убедиться в этом, достаточно решить простейшие задачки. Прежде всего, давление крови. Оно слагается из внешнего гидростатического плюс давление, развиваемое сердечной мышцей. Поэтому кровь по сосудам будет двигаться под ударами сердца совершенно независимо от глубины. Главное, чтобы в организме быстро установилось давление окружающей среды. То же можно сказать о деятельности почек, кишечника и т. п.

Вот и получается, что человек без всяких защитных скафандров может погружаться на колоссальные глубины. Да, именно глубины, а не только на дно неглубокого бассейна, как в рассказе С. Гансовского. И это не упрек автору, недаром же рассказ называется «Соприкосновенье»…

Но как создать в организме человека условия, близкие к китовым? Здесь нам придется вступить в область научных прогнозов.

Прежде всего, необходимо сохранить воздух в легких. Не дать глубинам сжать грудную клетку. В принципе это осуществимо при помощи системы клапанов, которые можно вмонтировать, ну хотя бы в специальную маску.

Вторая проблема – это такое насыщение организма кислородом, которое обеспечило бы бесперебойную работу внутренних органов в течение длительного времени.

Так что идея, научная идея создания в человеческом организме условий для долговременного пребывания на больших глубинах уже существует, хотя до ее практического осуществления, вероятно, еще очень далеко.

Биологам предстоит решить важнейшие проблемы: понизить чувствительность дыхательного центра в мозгу к накапливающейся в процессе работы организма углекислоте или же вообще найти способы ее выведения из организма; кроме того, еще неясно, как решить проблему быстрого погружения и всплытия. В общем, дел предстоит еще немало! Наука сегодняшнего дня вступила лишь в первое «соприкосновение» с замечательной и многообещающей тайной природы.

В. Волков,

кандидат технических наук


    Ваша оценка произведения:

Популярные книги за неделю