355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антон Первушин » Битва за звезды-2. Космическое противостояние (часть I) » Текст книги (страница 25)
Битва за звезды-2. Космическое противостояние (часть I)
  • Текст добавлен: 10 октября 2016, 06:48

Текст книги "Битва за звезды-2. Космическое противостояние (часть I)"


Автор книги: Антон Первушин



сообщить о нарушении

Текущая страница: 25 (всего у книги 32 страниц)

Лунная база по проекту НПО «Энергия»

О необходимости планомерного освоения Луны много писал и другой пионер отечественной космонавтики – Валентин Глушко.

В его теоретических работах 70-х годов выдвигалась концепция многоцелевой лунной базы, основанная на полученных к тому времени данных о природе Луны и современных технических возможностях ее освоения и использования. Основные аргументы в пользу строительства обитаемой лунной базы сводились к следующему. Такая база удобна для ведения непрерывного глобального контроля всей поверхности Земли и окружающего ее космического пространства. С нее возможно проведение уникальных астрофизических экспериментов. Малая сила тяжести и тем самым умеренные затраты энергии для отлета с Луны, в сочетании с ее близостью к Земле, создают благоприятные возможности вовлечения лунных ресурсов в сферу космического производства, которое может быть организовано на геоцентрических и селеноцентрических орбитах. При этом отмечалось, что первичную обработку лунного сырья целесообразно производить на промышленных установках, расположенных на Луне и использующих дармовую солнечную энергию.

Лунные установки по производству кислорода из местных материалов могли бы обеспечить окислителем местные нужды и заправку космических транспортных грузовых и пилотируемых кораблей местного и дальнего следования как на Луне, так и на селеноцентрической орбите.

Валентин Глушко всячески подчеркивал, что местные ресурсы, в качестве которых можно рассматривать лунные породы, при надлежащей обработке могут обеспечить производство ракетного топлива достаточной эффективности для выполнения стартов с лунной поверхности.

Исследования Луны автоматическими аппаратами были первым шагом в ее изучении. Следующим этапом должны быть пилотируемые экспедиции, создающие на Луне сначала временные базы, затем долговременные и, наконец, постоянно действующие.

Свой первый проект лунной базы Глушко предложил еще в рамках программы «Вулкан-ЛЭК» (ее мы обсуждали в главе 10).

Благодаря огромному запасу грузоподъемности, который могла бы обеспечить разрабатываемая в НПО «Энергия» ракетаноситель «Вулкан», на Луну помимо экспедиционного корабля «ЛЭК» планировалось доставить два специализированных модуля: лабораторно-жилой и лабораторно-заводской.

Лабораторно-жилой модуль состоял из цилиндрических камер, содержащих тамбур для выхода на поверхность, камбуз с туалетом, хранилище и командный центр.

В круглом помещении, соединяющем цилиндры, располагалась каюткомпания, в верхнем цилиндре – лаборатория и каюты. Габариты лабораторно-жилого модуля: полная длина – 9,7 метра, максимальный диаметр – 11,3 метра, обитаемый объем – 160 м3, полная масса – 21,5 тонны, полезный груз – 6,3 тонны. В этом модуле, посаженном на Луне в автоматическом режиме, экипаж из трех человек мог провести до одного года.


Лабораторно-заводской модуль состоял из таких же типовых цилиндров, но оборудованных под задачи научных исследований и производства необходимых компонент экспедиции. В нижних цилиндрах размещались: фабрика по производству кислорода с ковшом для забора и разрыхления лунного грунта, биологическая, химическая и физическая лаборатории.

В верхнем цилиндре планировалось устроить оранжерею. Габариты лабораторно-заводского модуля: полная длина – 4,5 метра, максимальный диаметр – 8 метров обитаемый объем – 100 м3, полная масса – 15,5 тонны, полезный груз – 6,07 тонны. Для обслуживания лабораторно-заводского модуля достаточно одного оператора, который будет постоянно жить в лабораторно-жилом модуле.

Теоретически весь комплект модулей временной лунной базы, включающий лунный экспедиционный корабль «ЛЭК», лабораторно-жилой, лабораторно-заводской модули, а также тяжелый луноход с обитаемым блоком, на Луну могли бы доставить всего лишь две ракеты «Вулкан». Однако эти идеи, как и работы по созданию сверхтяжелого носителя «Вулкан», не нашли официальной поддержки. По сути проект временной лунной базы «Вулкан-ЛЭК» создавался по личной инициативе Валентина Глушко, так и не став содержанием официальной космической политики.

Лунные заводы

Сегодня интерес к Луне возвращается.

И вновь заговорили о необходимости строительства лунной базы.

Дело в том, что исследования лунного грунта показали: естественный спутник Земли – это поистине неисчерпаемый резервуар энергетики будущего.

Как известно, большие надежды на решение энергетических проблем возлагаются на управляемые термоядерные реакции.

В основе этих процессов лежит реакция синтеза ядер, обладающая эффективным выделением энергии при малых эксплуатационных затратах и практическим отсутствием радиоактивных отходов. Одна из таких реакций заключается в слиянии ядер дейтерия и изотопа гелий-3. На Земле данный изотоп встречается крайне редко. Специалисты оценивают его доступные запасы чрезвычайно малой величиной – около 500 килограммов. На Луне же в течение четырех миллиардов лет лунный грунт, как губка, «впитывал» гелий-3, приносимый солнечным ветром Результаты анализа образцов лунного грунта показывают, что в первых пяти метрах раздробленного слоя реголита накопилось порядка миллиона тонн гелия-3.

Такого количества ядерного топлива хватило бы на обеспечение электроэнергией не только лунной базы, но и всего человечества на протяжении 5 тысяч лет! Бомбардировка Луны метеоритами в течение сотен миллионов лет привела к тому, что ее поверхностный слой на глубину до 10 метров находится в раздробленном состоянии.

Это облегчает добычу и транспортировку лунного грунта к месту переработки. Отпадает необходимость в применении специальной техники для горнорудных разработок.

Самые общие подсчеты показывают, что в лунном карьере размером 100 на 100 метров и глубиной 10 метров (объем рыхлого вещества в естественном залегании) содержится значительное количество различных материалов. Уже сейчас можно сказать, что такой карьер обеспечит получение около 40 тысяч тонн кремния, пригодного, например, для изготовления ячеек солнечных батарей. Этого количества хватит для кремниевых фотоэлектрических преобразователей общей площадью примерно 12 км2. При современной эффективности типовых солнечных батарей такая гелиоэлектростанция по мощности будет равна, например, Ново-Воронежской АЭС или в три раза превысит мощность Днепрогэса.

Этот же лунный карьер может дать 9 тысяч тонн титана для изготовления несущих конструкций высокой прочности и долговечности. Для производства электроарматуры или других элементов космических сооружений на Луне и в окружающем космосе в карьере «найдется» от 15 до 30 тысяч тонн алюминия и от 5 до 25 тысяч тонн железа. К этим материалам добавится еще некоторое количество магния, кальция, хрома и других химических элементов. Наконец, из того же объема лунного реголита можно экстрагировать от 80 до 90 тысяч тонн кислорода. Добываемый кислород можно использовать в системе жизнеобеспечения самой лунной базы, в различных технологических процессах и в качестве одного из компонентов ракетного топлива.

Американская фирма «Карботек» («Carbotek») по контракту с НАСА разработала проект крупной установки на лунной поверхности для производства кислорода в количествах, позволяющих использовать его в качестве ракетного топлива в двигателях водородно-кислородного типа. В качестве исходного материала предполагается использовать породы, обогащенные ильменитом. В установке происходит процесс экстракции при температурах от 700 до 1200° и давлении 10 атмосфер. Проект рассчитан на 400 тонн полезной нагрузки для транспортировки на лунную поверхность из которых 45 тонн приходится на энергетическую установку мощностью 5 МВт для поддержания процесса экстракции.

Такой «кислородный завод» на лунной поверхности должен давать 1000 тонн кислорода в год.

Если треть добываемого кислорода использовать в качестве компонента ракетного топлива, то потребуется еще около 40 тонн водорода в год. Ученые из Вашингтонского университета рассчитали возможность получения такого количества водорода из поверхностной тонкой фракции лунного грунта и предложили проект соответствующего комплекса.

При типичном содержании водорода в верхнем рыхлом слое грунта (в результате насыщения частицами солнечного ветра), равном 50 микрограммам на грамм природного реголита, необходимо перерабатывать 6700 тонн тонкой фракции в день, если основываться на солнечной энергетике, и ограничить продолжительность активной работы установки 120 сутками в год.

Каким образом можно перерабатывать несколько тысяч тонн грунта в день? Предлагается передвигать весь комплекс со скоростью 6 км/ч при глубине обработки грунта до 1 метра. Принцип работы установки заключается в нагревании массы исходного материала (от солнечного коллектора) до 700° при давлении до 10 атмосфер. При этом из лунного вещества выделятся и другие газы. Наиболее эффективная технология – сжигание полученной из реголита смеси газов в лунном кислороде с последующим отделением воды. Предполагается, что наиболее целесообразно хранить и транспортировать полученный продукт в жидком виде с последующим применением электролиза для разделения кислорода и водорода непосредственно перед использованием.

В Университете Висконсина разработан проект другого завода-автомата передвижного типа для получения упомянутого выше изотопа гелия-3. В передней части добывающего агрегата размещается вращающее колесо с ковшами типа роторного экскаватора, которое черпает рыхлый грунт и загружает его в бункер, где происходит обработка. В основном модуле этого завода около 800 тонн грунта с помощью микроволновой техники всего за полчаса нагревается до 650°. Из выделяющейся газовой смеси отбирается гелий-3. По предварительным оценкам продуктивность этого комплекса может достигать 20 килограммов уникального газа в год. «Отжатый» грунт возвращается назад на поверхность, а завод продолжает свое движение к новому участку.

Таким образом, строительство базы или перерабатывающего завода на Луне становится экономически выгодным.

Неудивительно поэтому, что темой освоения естественного спутника Земли заинтересовались и частные компании, рассчитывающие извлечь из реголита быструю и ощутимую прибыль.

Одна из таких компаний, американская «Applied Space Resources» («ASR»), намерена уже через пять лет отправить в космос свой первый лунный корабль. На организацию этой экспедиции потребуется не менее 1,5 миллиарда долларов, но руководство компании считает возможным изыскать требуемые средства. Что ж, поживем – увидим…


Глава 12 НА ПУТИ К МАРСУ

Новая цель – Марс

Запуск первого спутника, полет Юрия Гагарина на орбиту, высадка экипажа космического корабля «Аполлон-11» на Луну – все это, без сомнения, самые значимые этапы в истории космонавтики. Однако эти достижения должны были померкнуть на фоне главного свершения человечества в XX веке – организации экспедиции на Марс.

И американские, и советские конструкторы, работающие в космической отрасли, именно в Марсе видели свою главную цель и тот рубеж, после достижения которого можно будет говорить о следующей цели – звездах. Вспомним, ведь еще Фридрих Цандер сделал своим девизом лозунг «Вперед, на Марс!», а советские ракетчики из ГИРДа с энтузиазмом подхватили его. Немецкие и австрийские теоретики космонавтики задолго до Второй мировой войны и полетов «Фау-2» рассчитывали оптимальные траектории достижения Марса и других планет Солнечной системы. Вернер фон Браун, возглавивший американскую лунную программу, уже в 1949 году предложил проект трехступенчатой межпланетной ракеты, способной достигнуть орбиты Марса.

Марс завораживал, Марс притягивал взоры, Марс содержал в себе величайшую тайну. И казалось вполне логичным, что окончание «лунной гонки», столь бесславное для Советского Союза, стимулирует новую «марсианскую» гонку, в которой советские конструкторы попытаются взять реванш.

Однако именно кажущееся равенство в счете («Вы первые на Луне, зато мы первые в космосе») сыграло с марсианской пилотируемой программой злую шутку.

Советскому руководству почти сразу стало очевидно, что значительного политического резонанса экспедиция на Марс не вызовет, а денег и времени на нее уйдет куда больше, чем даже на создание лунной базы. Малую же политическую выгоду можно было получить, устанавливая рекорды: по количеству часов пребывания на орбите, по количеству членов экипажа на одном корабле, по количеству выходов в открытый космос, и так далее, и так далее, и так далее…

Американские политики, в свою очередь, хорошо помнили о том, как быстро угас интерес общественности к космической программе после того, как Нейл Армстронг ступил на поверхность Луны, показав тем самым всему миру и «заносчивым русским», кто в космосе «главный». Во второй раз мобилизовать все силы страны, живущей по законам рыночной экономики, на проект, который никогда не принесет значительной прибыли, вряд ли удалось бы: у Америки начала 70-х хватало других серьезных проблем. Научные же исследования можно было поручить автоматическим станциям.

В итоге ведущие космические организации как в США, так и в СССР были поставлены перед свершившимся фактом: денег на экспедицию к Марсу нет и в ближайшее время они не появятся. А ведь совсем недавно все было по-другому…

Американская марсианская программа

В сентябре 1969 года руководство НАСА подготовило доклад для президента и его администрации, озаглавленный «Космическая программа после Аполлона: директивы на будущее» («The Post-Apollo Space Program: Directions for the Future»).

В докладе отмечалось, что программа «Аполлон» безусловно является высшим достижением в космической области на сегодняшний день, но при этом она – лишь этап долговременного процесса по изучению и освоению человеком космического пространства. Авторы доклада указывали, что в этой связи особое беспокойство вызывает намерение администрации сократить ассигнования перспективных программ, в том числе – проект экспедиции на Марс. Руководители НАСА заверяли, что, используя накопленный в ходе освоения Луны опыт, Национальное управление по аэронавтике и космонавтике вполне способно осуществить такую экспедицию в течение 15 лет. Для этого предлагалось принять полет на Марс в качестве основной цели для существующей космической программы.

Сама подготовка к такому полету виделась авторам доклада разделенной на три фазы. Первая фаза – переориентация работы всех бюро, институтов, фирм и заводов, занятых в программе «Аполлон», на решение задач марсианского проекта. Вторая фаза – создание долговременной орбитальной станции и постоянной базы на Луне для обеспечения строительства межпланетного корабля и подготовки экипажей.

Третья фаза – собственно серия пилотируемых полетов к Марсу и на Марс с последующим возвращением на Землю.

Выбор конкретного графика реализации этой программы оставлялся на усмотрение президента. Он мог выбирать из двух вариантов: параллельное строительство орбитальной станции и межпланетного корабля (приблизительная стоимость – 6 миллиардов долларов) или последовательное строительство: сначала станции, а потом – корабля (стоимость – от 4 до 5 миллиардов долларов). В случае, если выбор будет сделан в пользу первого варианта, специалисты НАСА обещали построить межпланетный корабль к 1974 году, с тем чтобы запустить его к Марсу уже в 1981 году. Второй вариант гарантировал запуск межпланетного корабля только к 1986 году.

Любопытно, что в докладе не исключалась возможность вовлечения в программу советских космонавтов и специалистов с целью расширения научного сотрудничества на Земле и в космосе. То есть уже в 1969 году эксперты НАСА говорили о международной программе покорения Марса. Советские ученые заговорят об этом значительно позже.

Что же представляла собой американская программа экспедиции на Марс с инженерно-технической точки зрения?

В разные годы самые различные организации США предлагали свои проекты корабля для полета к Марсу. Разумеется, выбор оставался за руководством НАСА, и именно оно выделяло средства на исследования, так или иначе связанные с этой темой.

Например, с 1963 по 1969 год НАСА финансировало проект «НЕРВА» («NERVA»), направленный на создание ядерного ракетного двигателя для полета к Луне и планетам Солнечной системы. Подробнее я расскажу об этом проекте в главе 19, а сейчас остановимся только на тех деталях, которые касаются непосредственно космического корабля.

Существовало два более или менее проработанных варианта межпланетного корабля для полета на Марс с использованием ядерного ракетного двигателя типа «НЕРВА». В одном из них предполагалось использовать пять типовых ядерных ступеней: связку из трех таких ступеней – в качестве первой ступени трехступенчатой ракеты-носителя, и по одной такой же ступени – для второй и третьей ступеней.

Сборка подобной ядерной ракеты должна была производиться на околоземной орбите с использованием ракет-носителей «Сатурн-5». Сам полет к Марсу согласно этому проекту мог состояться уже в 1985 году.

Другой проект космического корабля на базе ядерных ступеней «НЕРВА» представлял собой трехступенчатую ракету, которая в отличие от первой не нуждалась в повторном запуске какого-либо из установленных на ней ядерных ракетных двигателей: после того как двигатели отрабатывали свое, их отделяли от корабля.

Схема межпланетной экспедиции с использованием этого корабля выглядела бы следующим образом.

Старт – 12 ноября 1981 года; выход на 24-часовую эллиптическую орбиту вокруг Марса – 9 августа 1982 года; изучение Марса с высадкой экспедиции на его поверхность; отбытие – 28 октября 1982 года; полет к Венере с ее проходом – 28 февраля 1983 года; выход на околоземную орбиту – 14 августа 1983 года; стыковка с кораблем «Спейс Шаттл»; возвращение экипажа на Землю через 640 дней после отправления.

Предполагалось, что большинство систем и оборудования корабля для полетов к Марсу будет аналогичным системам и оборудованию лунного корабля «Аполлон» (более того, этот проект некоторое время фигурировал под обозначением «Аполлон-Икс»). При этом, однако, обитаемый модуль должен иметь гораздо более высокое аэродинамическое качество и более совершенную систему теплозащиты, чем возвращаемая капсула «Аполлона», так как при сходе с космической траектории к Земле скорость будет порядка 13–18 км/с.

По представлениям конструкторов НАСА, в полет к Марсу должны были отправиться два одинаковых космических корабля. Каждый корабль имеет отсек с оборудованием, командный отсек и отсек посадки на Марс. В случае появления неисправностей в одном из кораблей на любой стадии полета его команда может покинуть аварийный корабль в своем командном отсеке и пристыковаться ко второму кораблю.

Следовательно, каждый корабль должен вмещать удвоенный экипаж (всего шесть человек). Отсеки с оборудованием и командный будут работать в переменном поле тяготения с перегрузкой от 0 до 0,6 g. Жилые помещения находятся в отсеке оборудования. Командный отсек используется при выходе на орбиту, во время входа в атмосферу и посадки, а также при аварийном покидании корабля. Посадочный отсек будет оставлен на околомарсианской орбите после того, как экипаж перейдет в отсек оборудования. Последний будет сброшен перед входом в атмосферу Земли.

Согласно исследованиям, проведенным в Исследовательском центре имени Лэнгли, весьма эффективным средством уменьшения начального веса системы для полета по маршруту Земля-Марс-Земля является использование аэродинамического торможения в атмосферах Марса и Земли.

С учетом этого в Центре разрабатывался крылатый космический корабль с высоким аэродинамическим качеством.

Стартовый вес ракетно-космической системы Центра имени Лэнгли составлял 400 тонн. Система была снабжена ядерной ракетной силовой установкой весом 59 тонн и собиралась на околоземной орбите с помощью четырех ракетносителей «Сатурн-5». Планировалось, что первая ракета доставит на орбиту ядерную силовую установку и полезную нагрузку в виде крылатого космического корабля, а три остальных – 12 баков с топливом.

В 1969 году проект «НЕРВА» был закрыт. Его развитие требовало значительных капиталовложений, а денег у НАСА едва хватало на обеспечение лунных экспедиций.

В это время американский ученый и конструктор Филип Боно выступил с детально проработанным альтернативным проектом марсианской экспедиции, получившим название «Деймос» («Project Deimos»).

В качестве ракетно-космического комплекса, которому предстояло доставить экспедиционный корабль к Марсу, Боно предлагал гигантский ускоритель на химическом топливе «Ромбус» («Rombus»), заправляемый на околоземной орбите высотой 320 километров. Стартовая масса комплекса – 3965 тонн. На участке разгона корабль должен будет сбросить четыре опустевших топливных бака. Через 200 дней после старта, выйдя на околомарсианскую орбиту высотой 555 километров, корабль избавится еще от двух баков; при этом масса его составит 985 тонн. Затем произойдет отделение 25-тонного экспедиционного корабля, на котором экипаж из трех астронавтов совершит высадку на Марс. Этот корабль имел очень незначительный обитаемый объем и мог обеспечить лишь 20-дневное пребывание астронавтов на поверхности красной планеты. В перспективе можно было бы продлить время пребывания до года, загодя доставив на Марс необходимые запасы продовольствия, кислорода и воды.

По окончании исследовательской программы экипаж стартует в 11-тонном возвращаемом модуле экспедиционного корабля и, состыковавшись с разгонным блоком, через 280 дней после выхода на орбиту Марса покидает пределы красной планеты. Обратная дорога займет еще 330 дней.

Полная масса комплекса после возвращения к Земле составит всего 340 тонн.

Межпланетный корабль рассчитывался на шестерых астронавтов. Для выполнения успешного полета к Марсу и обратно им потребовалось бы 6500 килограммов продовольствия, кислорода и воды. Энергоснабжение корабля обеспечивалось двумя ядерными реакторами «СНАП-8» («SNAP-8»).

Согласно выкладкам Боно, если бы корабль «Деймос» удалось запустить к Марсу 9 мая 1986 года, то уже 25 ноября 1986 года он бы вышел на околомарсианскую орбиту, а 16 августа 1988 года экипаж вернулся бы на Землю.

Впрочем, предложение Филиппа Боно не заинтересовало руководство НАСА, и проект марсианской экспедиции «Деймос» остался лишь еще одной теоретической разработкой среди сотен других.

В конце 1970-х годов, когда и самому распоследнему американцу стало ясно, что пилотируемая экспедиция на Марс – дело не ближайшего, а весьма отдаленного будущего, в НАСА решили более серьезно подойти к проблеме длительного межпланетного полета. Для изучения вопроса о влиянии такого полета на организм астронавтов было предложено построить орбитальную станцию, которая станет прототипом обитаемого модуля межпланетного корабля – «ПММ» («РММ», «Planetary Mission Module»). Орбитальная станция-прототип имела форму колеса с габаритами: максимальный диаметр – 16,5 метра, обитаемый объем – 930 м3 полная масса – 100 тонн. Экипаж – 6 человек. Расчетный срок эксплуатации – 3 года. Потребляемая мощность – 25 кВт, энергоснабжение – от ядерного реактора.

В ходе проектирования и эксплуатации орбитальной станции «ПММ» предполагалось ответить на целый ряд вопросов связанных с длительной экспедицией к Марсу. Прежде всего следовало обеспечить нормальную жизнедеятельность экипажа, то есть определить необходимое количество запасов продовольствия, кислорода, воды и запасных частей к оборудованию с учетом невозможности их восполнения, рассчитать теплозащиту на случай опасного приближения к Солнцу и защиту от космического излучения. С другой стороны, перед разработчиками встала масса технических проблем достаточно ли мощности реактора, нужно ли раскручивать станцию для создания «искусственной гравитации» или можно обойтись без этого, какие системы требуют дублирования, а какие нет… И так далее, и тому подобное.

Проект станции-прототипа «ПММ» был вполне реален, но и его не удалось довести до завершения. Все ресурсы НАСА оказались задействованы в программе создания кораблей многоразового использования.


    Ваша оценка произведения:

Популярные книги за неделю