355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Кашкаров » Занимательная электроника. Нешаблонная энциклопедия полезных схем » Текст книги (страница 2)
Занимательная электроника. Нешаблонная энциклопедия полезных схем
  • Текст добавлен: 5 октября 2016, 02:45

Текст книги "Занимательная электроника. Нешаблонная энциклопедия полезных схем"


Автор книги: Андрей Кашкаров



сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц) [доступный отрывок для чтения: 5 страниц]

1.1.1. О деталях

Потребуются: кафельная плитка (толщиной 5 мм), постоянный ограничительный резистор сопротивлением 100 Ом в качестве шунта для безопасной работы светодиодного индикатора, постоянный резистор сопротивлением 17–20 кОм и мощностью рассеяния 5 Вт – в качестве нагревательного элемента, соединительный провод ШВВП (или аналогичный), светодиод с током до 10 мА (подойдет практически любой) и клей Fix-it (или аналогичный). Участок кафеля на один описанный нагревательный элемент может быть – как в моем случае – 2x3 см; для этого его уместно вырезать с помощью специального инструмента – плиткореза.

Сопротивление резистора 18–20 кОм предполагает, и это подтверждается практикой (по закону Ома), что общая потребляемая мощность при включении устройства в осветительную сеть 220 В достигнет примерно 4 Вт. Соответственно, радиолюбитель не лишен возможности установить параллельно (в электрическую схему, рис. 1.1) несколько подобных резисторов. Мощность нагрева и мощность потребления при этом кратно увеличатся, площадь обогрева – тоже.

В качестве R1 применяю МЛТ-0,5, в качестве R2 МЛТ-2. Светодиод – любой с током 10–15 мА.

1.1.2. Практика применения устройства

Перспективы применения описанной разработки довольно широки и ограничиваются только творческой фантазией.

В моем хозяйстве локальный и безопасный нагрев применяется для подогрева подложки под аквариумом зимой (на площадку 0,5 кв. м. подключается 8-10 резисторов), поверхности рабочего стола, установленного на лоджии (зимой довольно прохладно, несмотря на застекление). Если к тыльной стороне кафеля установить мощные проволочные резисторы типа ПЭВР (или аналогичные) и усилить электропроводку, кафель может нагреваться от сети 220 В до температуры и 70, и 80 °C, причем за весьма короткое время. Но тогда заявленная в первых строках моего описания экономичность разработки перестанет быть таковой.

Еще одна идея применения разработки в том, что ее без каких-либо переделок уместно использовать в качестве… фумигатора. Если на нагретую кафельную плитку положить пластинку для фумигатора, то вся конструкция выполнит роль «отпугивателя» комаров (летом) из жилого помещения. Только в данном случае пластину фумигатора можно положить не одну и в любое место подогретого стола (любой поверхности), что делает предложение более удобным в использовании, чем, к примеру, штатный или промышленный электрофумигатор.

Впрочем, напомню, что варианты практического применения этой конструкции не ограничены и могут найти в умах радиолюбителей и более изысканный путь.

Но это еще не все.


Рис. 1.5. Электрическая схема регулятора температуры нагрева

Теперь на двух разных примерах давайте посмотрим, как можно регулировать температуру нагрева резистора при подключении к сети 220 В и «безопасном» постоянном напряжении 12 В. В данном случае температура нагрева керамической пластины (плитки) прямо связана с падением напряжения на резисторе Rн (см. далее схемы на рис. 1.5 и 1.6).

1.1.3. Управление «керамическим» нагревом в осветительной сети 220 В

На рисунке 1.5 представлена электрическая схема устройства нагрева с управляющим элементом симистором.

При большом токе через нагревательный элемент (и прочие приборы с реактивным характером нагрузки) подобное устройство создаст радиопомехи как в радиоэфире, так и в электрической сети в пределах одного электрического контура (электросчетчика энергии). С другой стороны, предлагаемая на рисунке 5 схема, на мой взгляд, отличается своей простотой и эффективностью. В качестве управляющего элемента применен мощный симистор, который в открытом состоянии пропускает в нагрузку обе полуволны переменного напряжения. Дроссель L1 (45 витков трансформаторного провода ПЭЛ-0,8 на кольце 2000НН) и конденсатор С1 сглаживают пульсации напряжения в моменты неполного открытия симистора почти до нуля, что положительно сказывается на активной нагрузке. Что я имею в виду под этим словосочетанием?

Управление напряжением на симисторе осуществляется переменным резистором R2 (типа СПО-1) с линейной характеристикой изменения сопротивления (индекс В).


Рис. 1.6. Электрическая схема устройства

Устройство предназначено для регулировки напряжения на нагрузке мощностью до 100 Вт. В этих пределах симистор на теплоотвод устанавливать не нужно.

Корпус и ручка регулировки переменного резистора (для безопасности пользования) должны быть изолированы. Так как элементы узла подключены к опасному для жизни напряжению, при эксплуатации устройства следует соблюдать меры безопасности.

Должен заметить, что данная схема взята из промышленного устройства-диммера, которые хорошо продавались в розничной сети десяток лет назад. Для экономии времени экспериментов «керамического нагревателя» мною был проведен опыт именно с этой схемой (вместо Rн по замыслу производителя включается лампа накаливания мощностью 11–60 Вт). Однако устройство испытано и показало хорошие результаты: максимальный нагрев резистора Rн достигается за 4,5 минуты. При максимальном увеличении сопротивления резистора R2 падение напряжения на Rн всего около 10 В (переменного тока), и он не нагревается. В принципе элементы L1 и C1 в определенных случаях можно из схемы исключить.

Устройство в налаживании не нуждается.

Постоянные резисторы – типа МЛТ или С2-33. Ограничивающий резистор – R1 с мощностью рассеяния не менее 1 Вт. Симистор можно заменить на КУ208В-КУ208Г.

Конденсаторы С1 и С2 – типа МБМ, МБГО или аналогичные на рабочее напряжение не ниже 300 В.

1.1.4. Особенности конструкции при «низковольтном» питании 12 В

«Теплый стол» согласно схеме на рисунке 1.6 с питанием 12 В постоянного тока работает в двух аспектах – включено и выключено. Небольшое напряжение питания выбрано для максимальной безопасности работы с устройством. С помощью этой несложной схемы удается существенно расширить возможности описанного выше оригинального нагревательного элемента.

В основе схемы – популярный таймер КР1006ВИ1, включенный в качестве генератора импульсов. Скважность импульсов на выходе микросхемы (вывод 3) можно регулировать, изменяя напряжение смещения на входе 5 D1. Такое схемное решение давно получило название широтно-импульсного метода изменения выходного сигнала.

В электронную схему управления введена стабилизационная цепь, состоящая из элементов R6, C3 и стабилитрона VD1. В качестве последнего желательно применить любой из имеющихся полупроводниковых приборов с напряжением стабилизации 9 В. Ток, потребляемый микросхемой D1, в рабочем режиме – менее 10 мА, поэтому применение «простого» стабилитрона оправданно. Электролитический (оксидный) конденсатор С4 сглаживает низкочастотные пульсации по питанию.

Микросхема D1 при включении питания вырабатывает электрические импульсы прямоугольной формы. Частота импульсов определяется значениями элементов вре-мязадающей цепи R3C2. Чем меньше емкость конденсатора С2, тем выше частота импульсов на выходе (вывод 3 D1). Резисторы R1, R4, R5 образуют делитель напряжения с возможностью регулировки. Конденсатор С1 обеспечивает плавное изменение скважности прямоугольных импульсов. Форма импульсов показана внизу рисунка.

Составной транзистор VT1 открывается с каждым положительным фронтом прямоугольных импульсов, приходящих в его базу через ограничительный резистор с выхода микросхемы. Коэффициент заполнения последовательности импульсов колеблется, в зависимости от сопротивления делителя напряжения на входе D1, примерно от 35 до 100 %.

Поэтому напряжение на нагревательном элементе увеличивается пропорционально уменьшению сопротивления переменного резистора R5. При сопротивлении R5, равном 1 кОм и менее, напряжение на RK максимально.

Электролитические (оксидные) конденсаторы типа К50-29 – на рабочее напряжение не ниже 25 В.

Остальные конденсаторы в схеме выбраны керамическими или типа КМ. Вместо составного транзистора, управляющего нагревательным элементом, можно применить прибор КТ834А-КТ834В.

Составной транзистор VT1 необходимо установить на изолированный от массы автомобиля радиатор. Это повысит безопасность электронных элементов и надежность всего узла при длительной эксплуатации. Электрические параметры рекомендуемых транзисторов таковы, что весь узел имеет необходимый запас работоспособности; судите сами: максимальная мощность рассеивания КТ827 и КТ834 – 100 Вт; максимально допустимый ток через переход коллектор-эмиттер данных составных транзисторов – 5–8 А.

В настоящее время устройство доказало свою эффективность.

1.2. Электронный сигнализатор нарушения целостности теплоизоляции

Многие в своей жизни сталкивались с таким явлением, как продувка. Я веду речь о продувке ветром через «неплотности» в закрытом окне; причем даже современные стеклопакеты на окнах – не панацея от таких вещей. Небольшую струйку воздуха можно ощутить тактильно, буквально с помощью руки, если приложить ее к месту возможной щели. Продувание ветром с улицы сквозь щели в окнах (рамах) особенно опасны там, где на полу жилой комнаты играют дети, да и в эстетическом плане ветер с улицы портит картину – оставляет на окне черные разводы. Таким образом, нарушение изоляции в стеклопакетах можно заметить уже через неделю после их установки визуально, без всякого прибора – невооруженных глазом. Но что делать, когда проблема не выявляет себя, утечка холодного воздуха есть, но незначительная, вроде бы дети болеют от сквозняков – с улицы дует, но прямо это «не доказано». Тогда на помощь приходит простое приспособление, электрическая схема которого представлена на рисунке 1.7.


Рис. 1.7. Электрическая схема устройства

Электрическая схема устройства, сигнализирующего на поток холодного воздуха (сигнализатор продувки), реализована на трех транзисторах n-p-n-проводимости.

Отличительные особенности устройства – в простоте повторения и необычном датчике – термопаре. Я взял термопару ТТД-1 от популярного мультиметра и при испытаниях обнаружил интересный эффект.

Термопара, если есть разность температур между горячим и холодным концом, вырабатывает ЭДС. Оказалось, термопара очень чувствительна к резкому изменению температуры окружающей среды.

1.2.1. Особенность идеи

Так и родилась эта идея определения места продувки (течи воздуха) в применении… термопары.

Чувствительным датчиком устройства является термопара типа К – температурный щуп ТТД-1 – термопара открытого типа от популярного цифрового мультиметра (многофункционального тестера) М-830В; подключаются в схему в качестве датчика температуры. Технические характеристики поверхностного температурного щупа ТТД-01 типа ХА (К) таковы:

• диапазон измерения температуры: -50…+300 °C;

• длина погружной части (рабочая поверхность термопары): 2,5 мм;

• длина соединительного провода: 900 мм.

Особенность щупа ТТД-1 – в малой инерционности изменения состояния, поэтому его уместно использовать для определения локального воздушного потока.

Кстати, на практике установлено, что благодаря качественному изготовлению термопар точность измерения температур (у мультиметра М-830В) весьма высока.

Термопару я расположил в самодельном корпусе от… зубной щетки – в месте перфорации (отверстий). Воздушный поток через перфорацию в корпусе устройства (см. рис. 1.8) достигает рабочей поверхности термопары ТТД-1, охлаждая ее, вследствие чего возникает ЭДС (в зависимости от интенсивности воздушного потока, воздействующего на рабочую поверхность ТТД-1).


Рис. 1.8. Устройство в корпусе от зубной щетки

Испытания проводились в марте: как известно, это самый ветреный весенний месяц.

Холодный воздух (температурой ниже нуля), проникающий через «неплотности» изоляции на застекленной лоджии, приводит к увеличению тока в цепи датчика (базы и базы транзистора VT1).

На этом эффекте термопары основана работа всей схемы. Рассмотрим ее подробнее.

Подобные схемы многократно описаны в литературе, однако, на мой взгляд, большинство из них неоправданно усложнены, хоть при этом и применяется современная электронная база – операционные усилители и компараторы. Предлагаемая же простая схема основана на принципе последовательного усиления с использованием популярных кремниевых транзисторов (имеет высокий суммарный коэффициент усиления).

Транзисторы включены по схеме с общим эмиттером по принципу усилителя тока. Когда на датчик воздействует холодный поток воздуха, ток увеличивается и изменяется величина смещения на базе транзистора VT1. Следующий каскад еще больше усиливает ток. Нагрузкой транзисторного усилителя служит светодиод HL1. Его свечение свидетельствует об обнаружении в районе установки термопары воздушной тяги.

Устройство стабильно работает в диапазоне питающего напряжения постоянного тока 2,7–4 В. Для напряжения выше указанного в схеме потребуется изменить номиналы постоянных резисторов R1-R4.

В качестве источника питания используется аккумулятор в виде «мизинчиковой» батареи UltraFire 18650/ 2400 мАч с номинальным напряжением 3,7 В. Он содержат электронную плату контроля внешнего/внутреннего напряжения и автоматически отключает зарядку батареи при превышении напряжения 4,2 В, а также при глубокой разрядке элемента (ниже 2,75 В). Система внутренней защиты/контроля убережет аккумулятор UltraFire 18650 3,7 В от случайного короткого замыкания.

Для питания схемы (рис. 1.7) можно применить и «плоский» элемент CR3032 c номинальным напряжением питания 3 В.

1.2.2. Принцип работы устройства

Даже при слабом потоке воздуха (незначительной продувке) включается светодиод. Световой поток от него пропорционален силе воздушного потока в области проверки.

Чувствительность прибора регулируется изменением сопротивления постоянного резистора R1; при его увеличении чувствительность устройства повышается.

Для приведенной схемы, если она смонтирована без ошибок и с применением исправных радиоэлементов, нет необходимости в сложной настройке. Сопротивление R1 при напряжении питания 3,7 В выбрано таким, при температуре окружающего воздуха +22 °C светодиод не светился.

Индикатор продувки хорошо реагирует на локальный поток ветра с расстояния 0,5–6 см.

В приведенной конструкции постоянные резисторы типа МЛТ-0,125, светодиод HL1 – любой с током 1015 мА, транзисторы КТ315 можно заменить на аналогичные маломощные приборы КТ3102, КТ503, КТ373, КТ342 с любым буквенным индексом.

Корпус прибора может быть любой компактный.

В данном варианте сигнализатор продувки испытан не только для выявления неплотности в оконном проеме (окнах, рамах), но и в ряде других случаев, к примеру, для сигнализации тяги в бытовых вытяжках (рис. 1.9 и 1.10).


Рис. 1.9. Применение прибора для контроля тяги вытяжки


Рис. 1.10. Иллюстрация работы: светодиодный индикатор показывает наличие потока холодного воздуха

Нельзя сказать, что этот прибор в быту незаменим, однако необычное использование термопары и простая идея обнаружения несанкционированных воздушных потоков небольшой величины, пожалуй, стоят дальнейших разработок (усовершенствований) в этой области.

1.2.3. Варианты применения устройства

Второй вариант применения – выявление мест локального проникновения холодного воздуха через рамы и окна (см. рис. 1.11).


Рис. 1.11. Иллюстрация работы прибора по выявлению мест проникновения холодного воздуха через неплотности рам и окон – особенно полезно осенью и зимой

Кроме рассмотренного вариантов применения такого электронного устройства немало. Я опробовал и хочу поделиться только двумя из них, оставив радиолюбителям творческий простор для иных возможных вариантов.

Может возникнуть вопрос: зачем нужен сигнализатор прохладного воздуха в квартирах, если этот параметр можно контролировать визуально или, как чукча, выставлять послюнявленный указательный палец для тактильной диагностики воздушных потоков?

Отвечаю: нужен. Во-первых, кожа рук по-разному, в зависимости от общего состояния организма диагноста и окружающей температуры, воспринимает то или иное воздействие; тем более, когда речь идет не о сильных ветряных потоках, а об относительно слабом напоре воздуха.

То есть визуально фиксировать продувку сквозь изоляцию можно только с большой неточностью. Электроника, с позволения сказать, более объективна в этом, и почему бы не поручить ей такой безобидный контроль, сняв с человека хоть малую толику заботы?

Во-вторых, работа мысли в этом направлении стимулирует радиолюбителя к новым усовершенствованиям и открытиям в сфере применения как термопар (на рассмотренном примере показавших хорошие результаты в части безынерционности изменения тока в цепи и, как следствие, чувствительности всего устройства к потокам воздуха), так и самой схемы.

1.3. Сигнализатор засорившейся вытяжки

Фильтры для вытяжки улавливают от 85 до 99,95 % жировых аллергенов и загрязнителей размером до 0,001 мкм – эти частицы в десятки раз меньше, чем способны уловить фильтры S-класса в «бюджетных» моделях вытяжек, устанавливаемых на кухне.

Однако ничто не служит вечно, даже фильтры приходится менять – примерно раз в год. А это удовольствие – не из дешевых. Вот и возникает вопрос: а нельзя ли тут сэкономить?

Можно! И вот каким образом: нужно оснастить эконом-вытяжку индикатором и датчиком чистоты воздуха. Эти устройства помогут вовремя подать сигнал SOS, обнаружив непробиваемые наросты на внешнем фильтре вытяжки – акрилового типа KR-60 и установленного сразу за решеткой всасывания воздушного потока.

Датчик сработает, неоновый индикатор замерцает – это и будет сигналом о срочной замене дешевого внешнего фильтра: выбросил дешевый – уберег дорогой внутренний.

Сделать несложную доработку вытяжки сможет любой желающий.

1.3.1. С чем работать будем: кухонная вытяжка Bright

Вытяжка Bright отличается от остальных моделей в том же ценовом диапазоне техническими характеристиками: небольшим уровнем шума в максимальном режиме – всего 51 дБ и воздухопроизводительностью не менее 250 м3/ч.

Имеет сменный угольный и акриловые (жировой) фильтры (KR-60), три скоростных режима обеспечивает один электродвигатель-вентилятор. Остальные параметры аналогичны другим моделям кухонных вытяжек.


Рис. 1.12. Внешний вид кухонной вытяжки Bright в сборе

Для нашей переделки выбираем особо чувствительный датчик CG-P1 и световой индикатор в виде неоновой лампы. Датчик можно купить отдельно или снять с современного пылесоса, к примеру Elenberg VS-2015 c максимальной мощностью 1400 Вт. На рисунке 1.13 представлен вид на открытый корпус портативного пылесоса с датчиком пыли.


Рис. 1.12. Вид на датчик пыли CG-P1

Технические характеристики индикатора пыли CG-P1:

• ток – до 20 мА;

• напряжение – 250 В переменного тока;

• диапазон рабочих температур (в том числе температур входящего воздуха)– 0…95 °C;

• максимальное давление входящего воздуха – 5 кРа.


Рис. 1.14. График зависимости сопротивления датчика CG-P1 (кОм по оси ОХ) от загрязнения воздушного потока (в% по оси ОУ)

Датчик пыли серии CG-P1 предназначен для автоматического выключения. Он может использоваться в качестве защитного устройства и индикации в пылесбор-никах и разных типов вытяжек.

Принцип действия датчика пыли прост. Датчик оснащен тонкой (внутренний диаметр 0,8 мм, внешний – 1,2 мм) полихлорвиниловой трубочкой (длина 25 см). С одной стороны трубочка подключена к датчику CG-P1 (рис. 1.13), а другой ее конец выходит непосредственно в мешок пылесборника пылесоса, перед всасывающим раструбом вентилятора электродвигателя.

При наполнении пылесборника всасывание начинает тормозить, и в потоке всасываемого воздуха растет концентрация пыли, которая через трубку начинает «бомбардировать» датчик CG-P1. В результате датчик изменяет внутреннее сопротивление с единиц ГОм до десятков и сотен – в соответствии с графиком, представленным на рисунке 1.14.

Кстати, материал трубочки может быть и другим – к примеру, аналогичный медицинской капельнице с малым внутренним диаметром.

Отмечу, что датчик пыли CG-P1 – неразборный, не ремонтопригодный, не нуждается во внешнем уходе и чистке. Выпускаются изделия следующих номинальных диаметров, (мм): DN 25-40-50-65-80-150 – в соответствии с предназначением и объемом контролируемого воздушного потока.

В бытовых пылесосах я встречал только 25– и 40-миллиметровые датчики.

Изменение сопротивления (регулировка чувствительности) может быть сделано только вручную с помощью поворота эксцентрического вала в торце датчика (шлиц сделан под крестообразную отвертку) по часовой стрелке. Для этого в датчике делается отверстие под винт.

Датчик подключается в электрическую цепь согласно схеме на рисунке 1.15.


Рис. 1.15. Электрическая схема подключения датчика пыли и индикаторной лампы

В качестве индикатора используется любая неоновая лампа, в которой газ начинает светиться даже при незначительном токе в цепи, что вполне соответствует незначительному изменению сопротивления высокоомного датчика CG-P1.

В качестве неоновой лампы можно применить и миниатюрную лампу от подсветки современных включателей освещения и вентиляторов.


    Ваша оценка произведения:

Популярные книги за неделю