Текст книги "Фитодизайн. Как вырастить здоровый воздух в офисе и дома"
Автор книги: Андрей Цицилин
Жанры:
Сад и Огород
,сообщить о нарушении
Текущая страница: 2 (всего у книги 23 страниц) [доступный отрывок для чтения: 9 страниц]
Толуол (Толуен)
Предельно допустимая концентрация (ПДК) – 0,6 мг/м 3.
ХАРАКТЕРИСТИКА
• Бесцветная нерастворимая в воде жидкость с характерным запахом растворителя красок.
• Название «толуол» было дано этому веществу Ж. Якобом Берцелиусом, по имени «Толу бальзам» (Перуанский бальзам), ароматической смоле из тропического дерева Myroxylon balsamum, из которого он впервые был выделен.
• Получают в процессе производства бензина с помощью каталитического риформинга или при получении кокса из каменного угля.
ИСТОЧНИКИ В ПОМЕЩЕНИЯХ
Растворители.
Краски.
Силиконовые герметики.
Резиновые изделия.
Клеи.
Лаки.
Полиграфические издания.
Кожаные изделия.
Дезинфицирующие средства.
ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА
Низкие и умеренные концентрации вызывают раздражение глаз, сухость кожи и появление сыпи, усталость и спутанность сознания, слабость и опьянение, потерю памяти, кашель, свистящее дыхание, потерю аппетита, слуха и потерю цветового зрения.
Высокие концентрации вызывают головокружение, тошноту, сонливость, депрессию.
Это может также привести к потере сознания и даже смерти.
Отрицательно влияет на почки, нервную систему, печень, мозг и сердце.
У беременных женщин может увеличить риск повреждения плода.
Ксилолы (Диметилбензолы)
Смесь из трех структурных изомеров ароматических диметилбензол углеводородов.
Предельно допустимая концентрация (ПДК) – 50 мг/м 3.
ХАРАКТЕРИСТИКА
• Прозрачная, бесцветная, сладко пахнущая, легко воспламеняющаяся жидкость.
• Используется в качестве носителя для акриловой основы герметиков бетона.
• Почти 100 % производства п-ксилола и половина всех ксилолов используется для производства полимеров: полиэтилентерефталата (ПЭТ), идущего на изготовление пластиковых бутылок, и полиэфирных волокон для производства одежды.
• Высокооктановая добавка к моторным топливам.
ИСТОЧНИКИ В ПОМЕЩЕНИЯХ
Линолеум.
Клеи.
Мастики.
Шпаклевки.
Другие отделочные материалы.
ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА
Обладает наркотическим действием аналогичным действию бензола и толуола.
Вызывает головные боли, нарушение мышечной координации, головокружение, спутанность сознания, раздражение слизистой оболочки кожи, глаз, носа и горла, затрудненное дыхание и другие проблемы с легкими, задержку времени реакции, проблемы с памятью, дискомфорт в области живота.
Высокая концентрация ксилолов может привести к потере сознания и даже смерти.
Трихлорэтилен (Трихлорэтан)
Предельно допустимая концентрация (ПДК) – 1 мг/м 3.
ХАРАКТЕРИСТИКА
• Бесцветная или синяя летучая жидкость со сладковатым запахом хлороформа.
• Когда он был впервые широко произведен в 1920-х годах, использовался главным образом для извлечения растительных масел из растительных материалов, таких как соя, плодов кокосовой и масличной пальм.
• С его помощью экстрагируют кофеин из плодов кофе и производят вкусовые экстракты хмеля и пряностей. Он также используется для сушки, т. е. удаления следов воды для производства 100 % этанола.
• С 1930 по 1970-е гг. как в Европе, так и в Северной Америке его использовали в качестве обезболивающего газа в акушерской практике.
• В атмосфере в результате фотохимических реакций из трихлорэтилена может образовываться боевой отравляющий газ фосген.
ИСТОЧНИКИ В ПОМЕЩЕНИЯХ
Морилки.
Отделочные материалы.
Смазочные материалы.
Корректирующие жидкости при печатании.
Определенные виды очистителей.
Средства для обезжиривания металлических поверхностей, электронной аппаратуры, печатных плат, высокочувствительных приборов.
Типографские краски.
Лаки.
Клеи.
Хлорированная вода.
Средства для сухой чистки одежды, меха, тканей.
ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА
При вдыхании угнетает центральную нервную систему или оказывает нейротоксическое действие на ЦНС (глазной и тройничный нервы).
Высокие концентрации приводят к тахипноэ (учащенное поверхностное дыхание).
Вызывает головную боль, головокружение и путаницу, потерю сознания, угнетение дыхания и кровообращения (возможен летальный исход), отравляет печень и почки, вызывает боковой амиотрофический склероз, а также неврологические синдромы, напоминающие болезнь Паркинсона, заболевание неходжкинской лимфомы и рак шейки матки.
Исследования Национального института рака (позже Национальная токсикологическая программа) США показали, что воздействие трихлорэтилена оказывает канцерогенное воздействие на Животных, он вызывает рак печени у мышей и рак почки у крыс.
Метанол (Метиловый спирт, карбинол, древесный спирт)
Предельно допустимая концентрация (ПДК) – 1 мг/м 3.
ХАРАКТЕРИСТИКА
• Бесцветная, летучая, легкоподвижная жидкость с запахом, аналогичным запаху этилового спирта.
• Впервые его выделил из продуктов сухой перегонки древесины в 1661 году Роберт Бойл. В 1834 году французские химики Ж. Дюма и Э. Пелиго определили его состав. В 1857-м М. Бертло синтезировал метанол. Синтетический метанол в промышленных масштабах начали получать с 1923 г.
• Смешивается во всех соотношениях с водой, спиртами, ацетоном, бензолом.
• Метанол производится многими бактериями путем анаэробного метаболизма и встречается повсеместно в окружающей среде. В атмосфере (период полураспада 17,8 дней) метанол окисляется с помощью солнечного света в двуокись углерода и воду. Однако в процессе фотохимических реакций из него может получаться формальдегид, а при реакции с диоксидом азота в загрязненном воздухе образуется метилнитрит.
• Из-за своих токсичных свойств метанол часто используется как денатурантная добавка для производства этанола для промышленного использования. Этанол с добавлением метанола не облагается налогом.
• В промышленности метанол получают главным образом из природного газа и отходов нефтепереработки, а также коксующегося угля.
• Применяют метанол главным образом для получения формальдегида (до 40 %).
Его используют также для получения метилметакрилата, уксусной кислоты и др.
• Высокооктановая присадка к бензиновому топливу метил-трет-бутиловый эфир (МТБЭ).
ИСТОЧНИКИ В ПОМЕЩЕНИЯХ
Лаки.
Аэрозольные краски.
Жидкости для очистки стекол.
Клеи.
Растворители.
ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА
Сильный, преимущественно нервный и сосудистый яд с резко выраженным кумулятивным (накапливающимся) действием; отравление наступает при приеме внутрь (смертельная доза для человека 30 г, а 5-10 г могут вызвать тяжелое отравление), при вдыхании паров и проникновении через кожу.
Хроническое воздействие парами метанола вызывает: конъюнктивит, головную боль, головокружение, бессонницу, желудочные расстройства, двустороннюю слепоту.
У работника, подвергающегося воздействию от 1200 до 8000 частей метанола на миллион частей воздуха в течение четырех лет, произошла потеря зрения.
Монооксид углерода (Угарный газ, окись углерода)
Предельно допустимая концентрация (ПДК) – 20 мг/м 3.
ХАРАКТЕРИСТИКА
• Бесцветный, без вкуса и запаха газ, который немного легче воздуха.
• Средние уровни содержания угарного газа в жилых домах без газовых плит составляют от 0,5 до 5 частей на миллион частей воздуха. Концентрация около правильно отрегулированной газовой плиты равна от 5 до 15 частей на миллион частей воздуха.
• Самым крупным источником окиси углерода природного происхождения являются фотохимические реакции в тропосфере, которые производят около 5 миллионов тонн угарного газа в год. К другим природным источникам относятся вулканы, лесные пожары и другие формы сгорания.
• Этот газ был использован для казни в Древней Греции и Риме. Впервые был описан испанским доктором Арнальдусом де Вилла Нова в XI веке. В 1776 году французский химик де Лассон получил окись углерода при нагревании оксида цинка с коксом, но ошибочно сделал вывод, что газообразный продукт был водородом. Состав газа определил шотландский химик Уильям Камберленд Круикшанк в 1800 году. Его токсические свойства были тщательно исследованы на собаках Клодом Бернаром около 1846 гг.
• В атмосфере окись углерода содержится в концентрации 1 часть на 10 миллионов частей воздуха. В центре Мехико из-за автомобильных выхлопов 100–200 частей на миллион частей воздуха. Вследствие горения дров в печке в доме концентрация может быть 5 частей на тысячу частей воздуха.
ИСТОЧНИКИ В ПОМЕЩЕНИЯХ
Керосиновые и газовые обогреватели и водонагреватели.
Печи и камины.
Газовые плиты.
Бензиновые генераторы.
Автомобильные выхлопные газы из пристроенного к дому гаража.
Табачный дым.
ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА
В связи с тем, что угарный газ невозможно увидеть, почувствовать на вкус или запах, он может убить человека, прежде чем тот осознает наличие газа в своем доме.
При низких концентрациях угарный газ вызывает легкое недомогание, часто принимаемое за грипп или отравление, которое проходит на свежем воздухе.
Окись углерода вызывает головные боли, головокружение, дезориентацию, тошноту, усталость у здоровых людей, боль в грудной клетке у людей с болезнями сердца. При более высоких концентрациях вызывает нарушение зрения и координации, головокружение, головные боли, стенокардию, спутанность сознания, обмороки, судороги.
Угарный газ сначала растворяется в крови, но быстро связывается с гемоглобином, образуя карбоксигемоглобин. В результате чего гемоглобин не может связать кислород. Таким образом, окись углерода конкурирует с кислородом при связывании в гемоглобине, но, в отличие от кислорода, который быстро и легко отделяется от гемоглобина, окись углерода остается связанной с молекулой гемоглобина гораздо больше времени. Таким образом, концентрация карбоксигемоглобина продолжает расти при постоянной экспозиции угарного газа, вследствие чего остается меньше гемоглобина для переноса кислорода. И в результате происходит артериальная гипоксемия и смерть. При концентрации углекислого газа 667 частей на миллион частей воздуха он может вызвать преобразование до половины гемоглобина крови в карбоксигемоглобин, что может привести к коме и смерти.
Вызывает серьезные неблагоприятные последствия для плода беременной женщины.
Воздух в помещениях
Как говорится в последнем докладе Европейского отделения Всемирной организации здравоохранения за 2010 год «Руководство ВОЗ для качества внутреннего воздуха: отобранные загрязнители», несмотря на то, что воздействие загрязнителей воздуха в помещениях вызывает очень значительные нарушения здоровья во всем мире, особенно в развивающихся странах, информированность общества о степени загрязненности воздуха внутри помещений меньше, чем знание о загрязненности атмосферного воздуха.
Большинство людей думает, что закрытые пространства могут спасти их от вреда воздушных загрязнений. Во время смога, который наблюдался в 1960-1970-е годы в развитых европейских странах, а также в США, Японии, и сильного задымления, которое было в ряде регионов европейской части России в августе 2010 года, рекомендовалось оставаться дома, реже выходить на улицу.
Однако современные научные данные показывают, что внутри помещений загрязненность воздуха может быть в десятки раз выше, чем вовне. Многие знают, что угарный газ, если им дышать в замкнутом пространстве, может убить человека, но, будучи смешанным с атмосферным воздухом, он становится намного менее опасным. В начале 1950-х годов американский врач Т. Рандольф (T. G. Randolph) обнаружил, что аллергия и другие хронические заболевания связаны с загрязнением воздуха внутри помещений. Американское агентство по защите окружающей среды (ЕРА) считает, что загрязнение воздуха помещений является одной из пяти главных угроз здоровью. Однако миллионы людей не понимают серьезность этой проблемы или, что еще хуже, не признают ее существования.
Сегодня люди, живущие в городах развитых стран мира – США, Канаде, Японии, Западной Европе и даже России, проводят около 90 % всей своей жизни в помещениях. Поэтому увеличение времени воздействия загрязнителей воздуха вызывает увеличение числа и тяжести протекания аллергических реакций.
В развитых западноевропейских странах и США проблема качества воздуха в помещениях возникла после энергетического кризиса в 1973–1974 гг., когда в целях максимального энерго-и тепло-сбережения, с целью компенсации растущих цен на нефть строительная индустрия начала возводить герметически изолированные здания. При этом снижался приток свежего воздуха. В США также рекомендовалось каждому изолировать свои дома старой постройки и предлагались существенные налоговые льготы тем домовладельцам, которые добавочно изолировали свои дома в целях уменьшения расхода топлива на отопление и кондиционирование воздуха.
В России аналогичная ситуация произошла несколько позже. В конце двадцатого века мода на пластиковые окна, красивые металлические двери обернулась тем, что в домах резко ухудшилась естественная вентиляция, в комнатах становится душно, жарко и некомфортно.
В воздушной среде московских жилых и общественных зданий обнаружено около ста неорганических и органических химических соединений, относящихся к различным классам опасности. Среди летучих химических соединений, обнаруживаемых в воздухе чаще других, наиболее токсичны формальдегид, фенол, бензол, стирол, этилбензол, толуол, ксилол, альдегиды, ацетон, аммиак, этилацетат, оксиды азота, оксиды углерода. Кроме того, в воздухе зданий Москвы содержатся аэрозоли тяжелых металлов: свинца, кадмия, ртути, цинка, никеля, магния, хрома и др.
Исследования, проведенные в школах Москвы, показали, что в воздухе учебных заведений содержится около сорока восьми химических веществ. Среди летучих химических соединений, наиболее часто обнаруживаемых в воздухе помещений, наибольшую опасность представляют формальдегид, фенол, бензол, стирол, этилбензол, толуол, ксилол, альдегиды, ацетон, аммиак, этилацетат, оксиды азота, оксиды углерода. Кроме того, в воздухе зданий содержатся и аэрозоли тяжелых металлов: свинца, кадмия, ртути, цинка, никеля, магния, хрома и др. Причем концентрация формальдегида превышала ПДК в 4-10 раз, этилбензола в 1,5–2 раза, диоксида азота – до 2,7 раз. Установлено, что практически здоровых детей в состоянии удовлетворительной адаптации осталось исключительно мало даже в наиболее чистых районах.
Концентрация ряда веществ внутри зданий по сравнению с улицей может быть ниже (оксиды серы, озон и свинец). Другие (оксид и диоксид азота, оксид углерода, пыль) находятся на одном уровне, кроме тех случаев, когда имеются внутренние источники загрязнений. В то же время концентрация летучих органических веществ внутри помещений значительно превышает их концентрацию в атмосферном воздухе. Так, концентрации ацетальдегида, ацетона, бензола, этанола, толуола, этилацетата, фенола, ряда предельных углеродов в воздушной среде помещений превышала их концентрацию в атмосферном воздухе более чем в 10 раз.
Общий уровень загрязнения воздуха внутри зданий превосходит уровень загрязнения атмосферного воздуха в 1,5–4 раза в зависимости от степени загрязнения последнего, района размещения и интенсивности внутренних источников загрязнения.
В результате исследований установлено, что источниками 80 % химических веществ, обнаруженных в воздухе квартир, являются строительные и отделочные материалы.
Проблема экологической безопасности строительных материалов, конструкций и изделий в России является на сегодняшний день одной из самых острых, стоящих в одном ряду с проблемой безопасности продуктов питания. Из-за обилия источников загрязнения в воздух помещений поступают сотни соединений. И если в 1986 году только летучих соединений было обнаружено более трехсот, то в настоящее время их более тысячи. Именно закрытые помещения вносят основной вклад в химическую нагрузку на организм человека.
Тяжелые металлы могут содержаться в красках, хлорорганические соединения – в полимерах, ароматические соединения – в гидроизоляционных материалах, фенол и формальдегид – в теплоизоляционных материалах, древесно-стружечных изделиях, обработанной древесине. Практически все материалы, изготовленные в процессе глубокой переработки сырья или подвергшиеся обработке, обладают токсическими свойствами.
Негативные факторы воздушной среды в жилых и общественных зданиях вызывают неспецифические, но массовые нарушения здоровья: общее недомогание, снижение работоспособности, повышенную утомляемость, также они обуславливают рост аллергической заболеваемости в быту.
Бытовая пыль является сорбентом и накопителем химических веществ, загрязняющих воздух помещений. Комплекс химических соединений, загрязняющих воздушную среду жилых и общественных зданий, является активным стимулятором аллергенных свойств домашней пыли. В 1 грамме пыли может содержаться до 1 млн микроорганизмов.
Основными источниками грибкового загрязнения воздуха помещений являются: пораженные плесенью стеновые панели жилых домов, ванные комнаты с неработающей системой вентиляции и высокой влажностью воздуха, домашняя пыль, атмосферный воздух. Также для замкнутых помещений характерно отсутствие или ограниченность действия естественных факторов подавления патогенной, воздушной микрофлоры, а присутствие большого количества людей в школах, вузах, детских садах, поликлиниках и т. п., ускоряет рост численности микроорганизмов в воздухе.
Вентиляция
Вентиляция помогает контролировать загрязнение воздуха внутри помещений путем перемешивания его со свежим наружным воздухом. Конечно, это возможно в том случае, если наружный воздух является чистым. Определенные уровни вентиляции являются необходимым условием для комфорта людей. Всемирная организация здравоохранения рекомендует, чтобы воздух в жилых помещениях полностью сменялся каждые два часа. Добавочная вентиляция необходима для удаления излишней влажности, тепла, запахов.
Норвежские ученые во время проведения исследований в 35 классах восьми школ выявили, что реакция учащихся была на 5,4 % быстрее при вентиляции 44,2 м 3воздуха в час на человека по сравнению с 13,6 м 3/ час на человека. Аналогичные данные привели и исследователи США в 54 школах, используя стандартные академические тесты измерения успеваемости. Наблюдалось увеличение скорости решения математических задач на 8 % и скорости чтения на 13 % с удвоением вентиляции с 7,6 м 3/час на одного студента до 15,2 м 3/час на одного учащегося.
В среднем в офисах с увеличением интенсивности вентиляции от 42,5 м 3/час до 85 м 3/час наблюдается снижение заболеваемости сотрудников на 35 %.
Многие исследования показали, что в офисных зданиях с повышенным уровнем вентиляции (до 68 м 3/час на человека) наблюдается снижение симптомов синдрома больного здания (SBS) от 10 % до 80 %. Доказано, что распространение симптомов синдрома больного здания при уменьшении уровня вентиляции с 28,9 м 3/час до 17 м 3/час на человека увеличивается на 15 %, а увеличение вентиляции с 28,9 м 3/час до 85 м 3/час снижает распространение симптомов на 33 %.
Существует доказательства того, что жители домов с более высоким уровнем вентиляции реже отсутствуют на работе или в школе по причине болезни. Высокая степень увеличения распространенности респираторных заболеваний (на 50– 370 %) наблюдается в зданиях с высокой
скученностью людей (казармах, тюрьмах, домах престарелых и учреждениях здравоохранения), что связано с очень низким уровнем вентиляции.
При кашле и чихании множество бактерий и вирусов появляется в воздухе внутри помещений. При некоторых типах распространенных респираторных заболеваний ингаляция этих бактерий или вирусов может привести к инфекции и болезни. Эти болезни могут также быть переданы при прямых контактах. При повышении вентиляции можно уменьшить уровень респираторных заболеваний за счет снижения внутренней концентрации этих бактерий и вирусов в воздухе.
Также при плохой вентиляции увеличивается возможность заболеваний, связанных с сыростью или выбросами загрязняющих веществ в помещениях.
Шведские исследования 390 частных домов обнаружили, что дети в домах с очень низким уровнем вентиляции (0,34 м 3/час до 1,02 м 3/час) имели в два раза больше аллергических симптомов по сравнению с детьми в домах с более высокими показателями вентиляции (1,9 м 3/час до 6,1 м 3/час).
Хорошо известно, что респираторные заболевания являются следствием плохого содержания систем воздушного кондиционирования. В больших зданиях проблемы качества воздуха помещений чаще всего связаны с охлаждающими градирнями, размещениями воздухозаборных отверстий и плохим обслуживанием систем вентиляции, воздуховодов и т. п.
Бактерия легионелла (Legionella pneumophila), вызывающая довольно серьезное заболевание – болезнь легионеров (или легионеллезную пневмонию), была найдена в охлаждающих градирнях и других стоячих резервуарах воды, в т. ч и в камерах орошения кондиционеров. Эта болезнь была впервые отмечена в 1976 г. на конференции Американского легиона в Филадельфии, когда двумстам двадцати одному делегату стало очень плохо: они заболели пневмонией, а тридцать четыре человека даже умерли. Это недомогание и вызвала бактерия легионелла, найденная потом в воздухе здания и в тканях легких умерших людей. В России вспышка легионеллезной пневмонии наблюдалась в Свердловской области, она началась в конце июля 2007 г. и унесла четыре жизни. Кстати, эта бактерия может вызвать и лихорадку Понтиак.
Можно подумать, что кондиционирование может спасти эту трудную ситуацию, но это только кажется, и далее мы рассмотрим почему.