355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Робачевский » Операционная система UNIX » Текст книги (страница 14)
Операционная система UNIX
  • Текст добавлен: 6 октября 2016, 02:43

Текст книги "Операционная система UNIX"


Автор книги: Андрей Робачевский


Жанр:

   

ОС и Сети


сообщить о нарушении

Текущая страница: 14 (всего у книги 39 страниц)

Надежные сигналы

Стандарт POSIX. 1 определил новый набор функций управления сигналами. основанный на интерфейсе 4.2BSD UNIX и лишенный рассмотренных выше недостатков.

Модель сигналов, предложенная POSIX, основана на понятии набора сигналов (signal set), описываемого переменной типа sigset_t. Каждый бит этой переменной отвечает за один сигнал. Во многих системах тип sigset_t имеет длину 32 бита, ограничивая количество возможных сигналов числом 32.

Следующие функции позволяют управлять наборами сигналов:

#include

int sigempyset(sigset_t *set);

int siufillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

В отличие от функции signal(3C), изменяющей диспозицию сигналов, данные функции позволяют модифицировать структуру данных sigset_t, определенную процессом. Для управления непосредственно сигналами используются дополнительные функции, которые мы рассмотрим позже.

Функция sigemptyset(3C) инициализирует набор, очищая все биты. Если процесс вызывает sigfillset(3C), то набор будет включать все сигналы, известные системе. Функции sigaddset(3C) и sigdelset(3C) позволяют добавлять или удалять сигналы набора. Функция sigismember(3C) позволяет проверить, входит ли указанный параметром signo сигнал в набор.

Вместо функции signal(3C) стандарт POSIX. 1 определяет функцию sigaction(2), позволяющую установить диспозицию сигналов, узнать ее текущее значение или сделать и то и другое одновременно. Функция имеет следующее определение:

#include

int sigaction (int sig, const struct sigaction *act,

 struct sigaction *oact);

Вся необходимая для управлением сигналами информация передается через указатель на структуру sigaction, имеющую следующие поля:


void (*sa_handler)() Обработчик сигнала sig
void (*sa_sigaction)(int, siginfo_t*, void*) Обработчик сигнала sig при установленном флаге SA_SIGINFO
sigset_t sa_mask Маска сигналов
int sa_flags Флаги

Поле sa_handler определяет действие, которое необходимо предпринять при получении сигналов, и может принимать значения SIG_IGN, SIG_DFL или адреса функции-обработчика. Если значение sa_handler или sa_sigaction не равны NULL, то в поле sa_mask передается набор сигналов, которые будут добавлены к маске сигналов перед вызовом обработчика. Каждый процесс имеет установленную маску сигналов, определяющую сигналы, доставка которых должна быть заблокирована. Если определенный бит маски установлен, соответствующий ему сигнал будет заблокирован. После возврата из функции-обработчика значение маски возвращается к исходному значению. Заметим, что сигнал, для которого установлена функция-обработчик, также будет заблокирован перед ее вызовом. Такой подход гарантирует, что во время обработки, последующее поступление определенных сигналов будет приостановлено до завершения функции. Как правило, UNIX не поддерживает очередей сигналов, и это значит, что блокировка нескольких однотипных сигналов в конечном итоге вызовет доставку лишь одного.

Поле sa_flags определяет флаги, модифицирующие доставку сигнала. Оно может принимать следующие значения:


SA_ONSTACK Если определена функция-обработчик сигнала, и с помощью функции sigaltstack(2) задан альтернативный стек для функции-обработчика, то при обработке сигнала будет использоваться этот стек. Если флаг не установлен, будет использоваться обычный стек процесса.
SA_RESETHAND * Если определена функция-обработчик, то диспозиция сигнала будет изменена на SIG_DFL, и сигнал не будет блокироваться при запуске обработчика. Если флаг не установлен, диспозиция сигнала остается неизменной.
SA_NODEFER * Если определена функция-обработчик, то сигнал блокируется на время обработки только в том случае, если он явно указан в поле sa_mask. Если флаг не установлен, в процессе обработки данный сигнал автоматически блокируется.
SA_RESTART Если определена функция-обработчик, ряд системных вызовов, выполнение которых было прервано полученным сигналом, будут автоматически перезапущены после обработки сигнала.[25]25
  К таким системным вызовам, в частности, относятся read(2) и write(2) для медленных устройств, таких как терминалы, а также ioctl(2), fcntl(2), wait(2) и waitpid(2).


[Закрыть]
Если флаг не установлен, системный вызов возвратит ошибку EINTR.
SA_SIGINFO * Если диспозиция указывает на перехват сигнала, вызывается функция, адресованная полем sa_sigaction. Если флаг не установлен, вызывается обработчик sa_handler.
SA_NOCLDWAIT * Если указанный аргументом sig сигнал равен SIGCHLD, при завершении потомки не будут переходить в состояние зомби. Если процесс в дальнейшем вызовет функции wait(2), wait3(2), waitid(2) или waitpid(2), их выполнение будет блокировано до завершения работы всех потомков данного процесса.
SA_NOCLDSTOP * Если указанный аргументом sig сигнал равен SIGCHLD, указанный сигнал не будет отправляться процессу при завершении или останове любого из его потомков.

*Данные флаги не определены для UNIX BSD.

В системах UNIX BSD 4.x структура sigaction имеет следующий вид:

struct sigaction {

 void (*sa_handler)();

 sigset_t sa_mask;

 int sa_flags;

};

где функция-обработчик определена следующим образом:

void handler(int signo, int code, struct sigcontext *scp);

В первом аргументе signo содержится номер сигнала, code определяет дополнительную информацию о причине поступления сигнала, a scp указывает на контекст процесса.

Для UNIX System V реализована следующая возможность получения более полной информации о сигнале. Если установлен флаг SA_SIGINFO, то при получении сигнала sig будет вызван обработчик, адресованный полем sa_sigaction. Помимо номера сигнала, обычно передаваемого обработчику сигнала, ему будет переданы указатель на структуру siginfo_t, содержащую информацию о причинах получения сигнала, а также указатель на структуру ucontext_t, содержащую контекст процесса.

Структура siginfo_t определена в файле и включает следующие поля:


int si_signo Номер сигнала
int si_errno Номер ошибки
int si_code Причина отправления сигнала

В поле si_signo хранится номер сигнала. Поле si_code имеет следующий смысл: если его значение меньше или равно нулю, значит сигнал был отправлен прикладным процессом, в этом случае структура siginfo_t содержит также следующие поля:


pid_t si_pid Идентификатор процесса PID
uid_t si_uid Идентификатор пользователя UID

которые адресуют процесс, пославший сигнал; если значение si_code больше нуля, то оно указывает на причину отправления сигнала. Список возможных значений si_code для некоторых сигналов, соответствующих полю si_signo, приведен в табл. 2.19

Таблица 2.19. Значения поля si_code структуры siginfo_t для некоторых сигналов


si_signosi_code
SIGILL Попытка выполнения недопустимой инструкции
ILL_ILLOPC Недопустимый код операции (opcode)
ILL_ILLOPN Недопустимый операнд
ILL_ADR Недопустимый режим адресации
ILL_ILLTRP Недопустимая ловушка (trap)
ILL_PRVOPC Привилегированный код операции
ILL_PRVREG Привилегированный регистр
ILL_COPROC Ошибка сопроцессора
ILL_BADSTK Ошибка внутреннего стека
SIGFPE Особая ситуация операции с плавающей точкой
FPE_INTDIV Целочисленное деление на ноль
FPE_INTOVF Целочисленное переполнение
FPE_FLTDIV Деление на ноль с плавающей точкой
FPE_FLTOVF Переполнение с плавающей точкой
FPE_FLTUND Потеря точности с плавающей точкой (underflow)
FPE_FLTRES Неоднозначный результат операции с плавающей точкой
FPE_FLTINV Недопустимая операция с плавающей точкой
FPE_FLTSUB Индекс вне диапазона
SIGSEGV Нарушение сегментации
SEGV_MAPPER Адрес не отображается на объект
SEGV_ACCERR Недостаточно прав на отображаемый объект
SIGBUS Ошибка адресации
BUS_ADRALN Недопустимое выравнивание адреса
BUS_ADRERR Несуществующий физический адрес
BUS_OBJERR Аппаратная ошибка, связанная с объектом
SIGTRAP Ловушка
TRAP_BRKPT Процессом достигнута точка останова
TRAP_TRACE Ловушка трассирования процесса
SIGCHLD Завершение выполнения дочернего процесса
CLD_EXITED Дочерний процесс завершил выполнение
CLD_KILLED Дочерний процесс был «убит»
CLD_DUMPED Ненормальное завершение дочернего процесса
CLD_TRAPPED Трассируемый дочерний процесс находится в ловушке
CLD_STOPPED Выполнение дочернего процесса было остановлено
CLD_CONTINUED Выполнение остановленного дочернего процесса было продолжено
SIGPOLL Событие на опрашиваемом устройстве
POLL_IN Поступили данные для ввода
POLL_OUT Свободны буферы данных
POLL_MSG Сообщение ожидает ввода
POLL_ERR Ошибка ввода/вывода
POLL_PRI Высокоприоритетные данные ожидают ввода
POLL_HUP Устройство отключено

Уже отмечалось, что при получении сигнала от пользовательского процесса структура siginfo_t содержит дополнительные поля (табл. 2.20).

Таблица 2.20. Дополнительные поля структуры siginfo_t


si_signo
SIGILL SIGFPE caddr_t si_addr Адрес недопустимой инструкции
SIGSEGV SIGBUS caddr_t si_addr Адрес недопустимой области памяти
SIGCHLD pid_t si_pid Идентификатор дочернего процесса
int si_status Код возврата сигнала
SIGPOLL long si_band Ошибка канала (для модулей STREAMS)

Установить маску сигналов или получить текущую маску можно с помощью функции sigprocmask(2):

#include

int sigprocmask(int how, sigset_t *set, sigset_t *oset);

Маска сигналов изменяется в соответствии с аргументом how, который может принимать следующие значения:


SIG_BLOCK Результирующая маска получится путем объединения текущей маски и набора set
SIG_UNBLOCK Сигналы набора set будут удалены из текущей маски
SIG_SETMASK Текущая маска будет заменена на набор set

Если указатель set равен NULL, то аргумент how игнорируется. Если аргумент oset не равен NULL, то в набор, адресованный этим аргументом, помещается текущая маска сигналов.

Функция sigpending(2) используется для получения набора заблокированных сигналов, ожидающих доставки:

#include

int sigpending(int how, sigset_t *set, sigset_t *oset);

Список сигналов, ожидающих доставки, возвращается в наборе, адресованном аргументом set.

Системный вызов sigsuspend(2) замещает текущую маску набором, адресованным аргументом set, и приостанавливает выполнение процесса до получения сигналов, диспозиция которых установлена либо на завершение выполнения процесса, либо на вызов функции-обработчика сигнала.

#include

int sigsuspend(const sigset_t *set);

При получении сигнала, завершающего выполнение процесса, возврата из функции sigsuspend(2) не происходит. Если же диспозиция полученного сигнала установлена на вызов функции-обработчика, возврат из sisuspend(2) происходит сразу после завершения обработки сигнала. При этом восстанавливается маска, существовавшая до вызова sigsuspend(2).

Заметим, что в BSD UNIX вызов signal(3) является упрощенным интерфейсом к более общей функции sigaction(2), в то время как в ветви System V signal(3) подразумевает использование старой семантики ненадежных сигналов.

В заключение для иллюстрации изложенных соображений, приведем версию функции signal(), позволяющую использовать надежные сигналы. Похожая реализация используется в BSD UNIX. С помощью этой «надежной» версии мы повторим пример, рассмотренный нами выше, в измененном виде.

#include

#include

#include

#include

#include

/* Вариант «надежной» функции signal() */

void (*mysignal(int signo, void (*hndlr)(int)))(int) {

 struct sigaction act, oact;

 /* Установим маску сигналов */

 act.sa_handler = hndlr;

 sigemptyset(&act.sa_mask);

 act.sa_flags = 0;

 if (signo != SIGALRM)

  act.sa_flags = SA_RESTART;

 /* Установим диспозицию */

 if (sigaction(signo, &act, &oact) < 0)

  return SIG_ERR;

 return(oact.sa_handler);

}

/* Функция-обработчик сигнала */

static void sig_hndlr(int signo) {

 /* Эта часть кода нам уже не нужна

  mysignal(SIGINT, sig_hndlr);

 */

 printf(«Получен сигнал SIGINTn»);

}

main() {

 /* Установим диспозицию */

 mysignal(SIGINT, sig_hndlr);

 mysignal(SIGUSR2, SIG_IGN);

 /* Бесконечный цикл */

 while (1)

  pause();

}

Заметим, что при использовании надежных сигналов, не нужно восстанавливать диспозицию в функции-обработчике при получении сигнала.

Группы и сеансы

После создания процесса ему присваивается уникальный идентификатор, возвращаемый системным вызовом fork(2) родительскому процессу. Дополнительно ядро назначает процессу идентификатор группы процессов (process group ID). Группа процессов включает один или более процессов и существует, пока в системе присутствует хотя бы один процесс этой группы. Временной интервал, начинающийся с создания группы и заканчивающийся, когда последний процесс ее покинет, называется временем жизни группы. Последний процесс может либо завершить свое выполнение, либо перейти в другую группу.

Многие системные вызовы могут быть применены как к единичному процессу, так и ко всем процессам группы. Например, системный вызов kill(2) может отправить сигнал как одному процессу, так и всем процессам указанной группы. Точно так же функция waitpid(2) позволяет родительскому процессу ожидать завершения конкретного процесса или любого процесса группы.

Каждый процесс, помимо этого, является членом сеанса (session), являющегося набором одной нескольких групп процессов. Понятие сеанса было введено в UNIX для логического объединения процессов, а точнее, групп процессов, созданных в результате регистрации и последующей работы пользователя в системе. Таким образом, термин "сеанс работы" в системе тесно связан с понятием сеанса, описывающего набор процессов, которые порождены пользователем за время пребывания в системе.

Процесс имеет возможность определить идентификатор собственной группы процессов или группы процесса, который является членом того же сеанса. Для этого используются два системных вызова: getpgrp(2) и getpgid(2):

#include

#include

pid_t getpgrp(void);

pid_t getpgid(pid_t pid);

Аргумент pid, который передается функции getpgid(2), адресует процесс, идентификатор группы которого требуется узнать. Если этот процесс не принадлежит к тому же сеансу, что и процесс, сделавший системный вызов, функция возвращает ошибку.

Системный вызов setpgid(2) позволяет процессу стать членом существующей группы или создать новую группу.

#include

#include

int setpgid(pid_t pid, pid_t pgid);

Функция устанавливает идентификатор группы процесса pid равным pgid. Процесс имеет возможность установить идентификатор группы для себя и для своих потомков (дочерних процессов). Однако процесс не может изменить идентификатор группы для дочернего процесса, который выполнил системный вызов exec(2), запускающий на выполнение другую программу.

Если значения обоих аргументов равны, то создается новая группа с идентификатором pgid, а процесс становится лидером (group leader) этой группы. Поскольку именно таким образом создаются новые группы, их идентификаторы гарантированно уникальны. Заметим, что группа не удаляется при завершении ее лидера, пока в нее входит хотя бы один процесс.

Идентификатор сеанса можно узнать с помощью функции getsid(2):

#include

#include

pid_t getsid(pid_t pid);

Как и в случае с группой, идентификатор pid должен адресовать процесс, являющийся членом того же сеанса, что и процесс, вызвавший getsid(2). Заметим, что эти ограничения не распространяются на процессы, имеющие привилегии суперпользователя.

Вызов функции setsid(2) приводит к созданию нового сеанса:

#include

#include

pid_t setsid(void);

Новый сеанс создается лишь при условии, что процесс не является лидером какого-либо сеанса. В случае успеха процесс становится лидером сеанса и лидером новой группы.

Понятия группы и сеанса тесно связаны с терминалом или, точнее, с драйвером терминала. Каждый сеанс может иметь один ассоциированный терминал, который называется управляющим терминалом (controlling terminal), а группы, созданные в данном сеансе, наследуют этот управляющий терминал. Наличие управляющего терминала позволяет ядру контролировать стандартный ввод/вывод процессов, а также дает возможность отправить сигнал всем процессам ассоциированной с терминалом группы, например, при его отключении. Типичным примером является регистрация и работа пользователя в системе. При входе в систему терминал пользователя становится управляющим для лидера сеанса (в данном случае для командного интерпретатора shell) и всех процессов, порожденных лидером (в данном случае для всех процессов, которые запускает пользователь из командной строки интерпретатора). При выходе пользователя из системы shell завершает свою работу и таким образом отключается от управляющего терминала, что вызывает отправление сигнала SIGHUP всем незавершенным процессам текущей группы. Это гарантирует, что после завершения работы пользователя в системе не останется запущенных им процессов.[26]26
  Тем не менее в системе будут продолжать выполняться процессы, запущенные в фоновом режиме. Это утверждение также не справедливо для демонов – процессов, являющихся членами сеанса, не имеющего управляющего терминала. Система не имеет возможности автоматического отправления сигнала SIGHUP таким процессам при выходе пользователя, и они будут продолжать выполняться даже после завершения пользователем работы в UNIX. Для «превращения» процесса в демона, он должен воспользоваться функцией setsid(2) и создать новый сеанс, лидером которого он автоматически окажется и который не будет ассоциирован с управляющим терминалом. Эти вопросы будут более подробно обсуждены при иллюстрации программы-демона далее в этой главе.


[Закрыть]

Текущие и фоновые группы процессов

Как было показано, для каждого управляющего терминала существует сеанс, включающий одну или несколько групп процессов. Одна из этих групп является текущей (foreground group), а остальные фоновыми (background group).[27]27
  Наличие текущей и фоновых групп процессов в сеансе работы пользователя зависит от возможности командного интерпретатора управлять заданиями (job control). При отсутствии этой возможности все процессы будут выполняться в той же группе, что и shell.


[Закрыть]
Сигналы SIGINT и SIGQUIT, которые генерируются драйвером терминала, посылаются всем процессам текущей группы. Попытка процессов фоновых групп осуществить доступ к управляющему терминалу, как правило, вызывает отправление им сигналов SIGSTP, SIGTTIN или SIGTTOU.

Рассмотрим следующие команды:

$ find / -name foo &

$ cat | sort

При этом происходит чтение ввода пользователя с клавиатуры (cat(1) и сортировка введенных данных (sort(1)). Если интерпретатор поддерживает управление заданиями, оба процесса, созданные для программ cat(1) и sort(1), будут помещены в отдельную группу. Это подтверждается выводом команды ps(1):

$ ps -efj | egrep «PID|andy»

UID  PID  PPID PGID SID  С  STIME   TTY   TIME CMD

andy 2436 2407 2435 2407 1 15:51:30 tty01 0:00 sort

andy 2431 2407 2431 2407 0 15:51:25 tty01 0:00 find / -name foo

andy 2407 2405 2407 2407 0 15:31:09 tty01 0:00 -sh

andy 2435 2407 2435 2407 0 15:51:30 tty01 0:00 cat

Все четыре процесса (sh, find, cat и sort) имеют один и тот же идентификатор сеанса, связанного с управляющим терминалом tty01. Процессы cat(1) и sort(1) принадлежат одной группе, идентификатор которой (2435) отличен от идентификатора группы командного интерпретатора (2407). То же самое можно сказать и о процессе find(1), который является лидером отдельной группы (2431). Можно также заметить, что процессы sh(1), find(1) и cat(1) являются лидерами групп, a еще sh(1) и лидером сеанса.

Хотя команда ps(1) не указывает, какие группы являются фоновыми, а какая текущей, синтаксис команд позволяет утверждать, что командный интерпретатор помещает cat(1) и sort(1) в текущую группу. Это, во-первых, позволяет процессу cat(1) читать данные со стандартного потока ввода, связанного с терминалом tty01. Во-вторых, пользователь имеет возможность завершить выполнение обоих процессов путем нажатия клавиши <Del> (или <Ctrl>+<C>), что вызовет генерацию сигнала SIGINT. Получение процессами этого сигнала вызовет завершение их выполнения (действие по умолчанию), если, конечно, процесс не установил игнорирование SIGINT. На рис. 2.13. представлена схема взаимодействия управляющего терминала, сеанса и групп процессов для приведенного выше примера. Более детально взаимосвязь между терминалом и процессами рассмотрена в следующей главе.

Рис. 2.13. Связь между управляющим терминалом, сеансом и группами

Если командный интерпретатор не поддерживает управление заданиями, оба процесса станут членами той же группы, что и сам shell. В этом случае командный интерпретатор должен позаботиться об игнорировании сигналов SIGINT и SIGQUIT, чтобы допустимые действия пользователя (такие как нажатие клавиши <Del> или <Ctrl>+<C>) не привели к завершению выполнения shell и выходу из системы.

Ограничения

UNIX является многозадачной системой. Это значит, что несколько процессов конкурируют между собой при доступе к различным ресурсам. Для «справедливого» распределения разделяемых ресурсов, таких как память, дисковое пространство и т.п., каждому процессу установлен набор ограничений. Эти ограничения не носят общесистемного характера, как, например, максимальное число процессов или областей, а устанавливаются для каждого процесса отдельно. Для получения информации о текущих ограничениях и их изменения предназначены системные вызовы getrlimit(2) и setrlimit(2):

#include

#include

int getrlimit{int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

Аргумент resource определяет вид ресурса, для которого мы хотим узнать или изменить ограничения процесса. Структура rlimit состоит из двух полей:

rlim_t rlim_cur;

rlim_t rlim_max;

определяющих, соответственно, изменяемое (soft) и жесткое (hard) ограничение. Первое определяет текущее ограничение процесса на данный ресурс, а второе – максимальный возможный предел потребления ресурса. Например, изменяемое ограничение на число открытых процессом файлов может составлять 64, в то время как жесткое ограничение равно 1024.

Любой процесс может изменить значение текущего ограничения вплоть до максимально возможного предела. Жесткое ограничение может быть изменено в сторону увеличения предела потребления ресурса только процессом с привилегиями суперпользователя. Обычные процессы могут только уменьшить значение жесткого ограничения. Обычно ограничения устанавливаются при инициализации системы и затем наследуются порожденными процессами (хотя в дальнейшем могут быть изменены).

Вообще говоря, максимальный возможный предел потребления ресурса может иметь бесконечное значение. Для этого необходимо установить значение rlim_max равным RLIM_INFINITY. В этом случае физические ограничения системы (например, объем памяти и дискового пространства) будут определять реальный предел использования того или иного ресурса.

Различные ограничения и связанные с ними типы ресурсов приведены в табл. 2.21.

Таблица 2.21. Ограничения процесса (значения аргумента resource)


RLIMIT_CORE Максимальный размер создаваемого файла core, содержащего образ памяти процесса. Если предел установлен равным 0, файл core создаваться не будет.После создания файла core запись в этот файл будет остановлена при достижении предельного размера.
RLIMIT_CPU Максимальное время использования процессора в секундах.При превышении предела процессу отправляется сигнал SIGXCPU.
RLIMIT_DATA Максимальный размер сегмента данных процесса в байтах, т.е. максимальное значение смещения брейк-адреса.При достижении этого предела последующие вызовы функции brk(2) завершатся с ошибкой ENOMEM.
RLIMIT_FSIZE Максимальный размер файла, который может создать процесс. Если значение этого предела равно 0, процесс не может создавать файлы.При достижении этого предела процессу отправляется сигнал SIGXFSZ. Если сигнал перехватывается или игнорируется процессом, последующие попытки увеличить размер файла закончатся с ошибкой EFBIG.
RLIMIT_NOFILE Максимальное количество назначенных файловых дескрипторов процесса.При достижении этого предела, последующие попытки получить новый файловый дескриптор закончатся с ошибкой EMFlLE.
RLIMIT_STACK Максимальный размер стека процесса.При попытке расширить стек за установленный предел отправляется сигнал SIGSEGV. Если процесс перехватывает или игнорирует сигнал и не использует альтернативный стек с помощью функции sigaltstack(2), диспозиция сигнала устанавливается на действие по умолчанию перед отправкой процессу.
RLIMIT_VMEM Максимальный размер отображаемой памяти процесса в байтах. (Предел определен в версиях System V.)При достижении этого предела последующие вызовы brk(2) или mmap(2) завершатся с ошибкой ENOMEM.
RLIMIT_NPROC Максимальное число процессов с одним реальным UID. Определяет максимальное число процессов, которые может запустить пользователь. (Предел определен в версиях BSD UNIX.)При достижении этого предела, последующие вызовы fork(2) для порождения нового процесса завершатся с ошибкой EAGAIN.
RLIMIT_RSS Максимальный размер в байтах резидентной части процесса (RSS – Resident Set Size). Определяет максимальное количество физической памяти, предоставляемой процессу. (Предел определен в версиях BSD UNIX.)Если система ощущает недостаток памяти, ядро освободит память за счет процессов, превысивших свой RSS.
RLIMIT_MEMLOCK Максимальный физической памяти (физических страниц) в байтах, который процесс может заблокировать с помощью системного вызова mlock(2). (Предел определен в версиях BSD UNIX.)При превышении предела системный вызов mlock(2) завершится с ошибкой EAGAIN.

В заключение приведем пример программы, выводящий на экран установленные ограничения для процесса:

#include

#include

/* Процедура вывода на экран текущего и максимального

   пределов потребления ресурса resource */

void disp_limit(int resource, char *rname) {

 struct rlimit rim;

 getrlimit(resource, &rlm);

 printf("%-13s ", rname);

 /* Значение изменяемого ограничения */

 if (rlm.rlim_curr == RLIM_INFINITY)

  printf("infinite ");

 else

  printf("%101d ", rlm.rlim_cur);

 /* Значение жесткого ограничения */

 if (rlm.rlim_max == RLIM_INFINITY)

  printf(«infinite n»);

 else

  printf(«%10ldn», rlm.rlim_max);

}

main() {

 disp_limit(RLIMIT_CORE, «RLIMIT_CORE»);

 disp_limit(RLIMIT_CPU, «RLIMIT_CPU»);

 disp_limit(RLIMIT_DATA, «RLIMIT_DATA»);

 disp_limit(RLIMIT_FSIZE, «RLIMIT_FSIZE»);

 disp_limit(RLIMIT_NOFILE, «RLIMIT_NOFILE»);

 disp_limit(RLIMIT_STACK, «RLIMIT_STACK»);

 /* BSD */

#ifdef RLIMIT_NPROC

 disp_limit(RLIMIT_NPROC, «RLIMIT_NPROC»);

#endif

 /* BSD */

#ifdef RLIMIT_RSS

 disp_limit(RLIMIT_RSS, «RLIMIT_RSS»);

#endif

 /* BSD */

#ifdef RLIMIT_MEMLOCK

 disp_limit(RLIMIT_MEMLOCK, «RLIMIT_MEMLOCK»);

#endif

 /* System V */

#ifdef RLIMIT_VMEM

 disp_limit(RLIMIT_VMEM, «RLIMIT_VMEM»);

#endif

}

Запуск программы под управлением операционной системы Solaris 2.5 даст следующие результаты:

$ а.out

RLIMIT_CORE   infinite   infinite

RLIMIT_CPU    infinite   infinite

RLIMIT_DATA   2147479552 2147479552

RLIMIT_FSIZE  infinite   infinite

RLIMIT_NOFILE 64         1024

RLIMIT_STACK  8388608    2147479552

RLIMIT_VMEM   infinite   infinite


    Ваша оценка произведения:

Популярные книги за неделю