355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Заклятие Фавна » Текст книги (страница 12)
Заклятие Фавна
  • Текст добавлен: 10 сентября 2016, 19:33

Текст книги "Заклятие Фавна"


Автор книги: Анатолий Томилин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 12 (всего у книги 18 страниц)

Вместе с Якоби Ленц установил, что любая магнитоэлектрическая машина, которая служит для производства электрического тока, может быть использована в качестве электродвигателя, если через ее якорь или арматуру, как тогда говорили, пропускать ток от постороннего источника.

Ленц родился в старинном прибалтийском городе Дерпте (ныне город Тарту в Эстонской ССР). Шестнадцати лет поступил в Дерптский университет, где очень скоро обратил на себя внимание.

В 1823 году наш знаменитый мореплаватель Отто Евстафьевич Коцебу пригласил молодого человека принять участие в кругосветном путешествии на шлюпе «Предприятие» в качестве физика и натуралиста экспедиции. Ленц согласился и блестяще справлялся со своими обязанностями в течение всего плавания. Свидетельством его успехов является то, что сразу, по возвращении Ленц был принят адъюнктом Петербургской Академии наук и четыре года спустя, едва достигнув 26 лет, стал ординарным академиком.

Деятельность свою в Академии наук Ленц начал с реорганизации лаборатории физики и постановки серии опытов по электричеству и магнетизму. Независимо от Джоуля он вывел закон, утверждающий, что количество тепла, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника и квадрату силы тока. Затем он повторил опыты Деви, обнаружившего, что при нагревании электрическое сопротивление провода растет, и открыл закон, по которому должна меняться электропроводность металлов с изменением температуры.

В то же время он преподавал в Морском кадетском корпусе, возглавлял кафедру физики и физической географии в Петербургском университете. Позже был избран деканом физико-математического факультета, а потом и ректором.

Ленц преподавал также в Михайловском артиллерийском училище и в Главном педагогическом институте, имел много помощников и учеников, которые в дальнейшем стали замечательными учеными. Многие достижения Ленца опередили свое время. О них забыли. И через полвека, когда сама жизнь и развитие техники потребовали объяснения электромагнитных явлений, вошедших в обиход, положения Ленца открывали вновь, называя их краеугольным камнем нарождающейся электротехники.

Летом 1839 года праздношатающийся люд северной столицы Русского государства облепил берега Невы. Публика несостоятельнее толпилась на набережных, а кто попроще спускались прямо на зеленый берег. Часов около десяти утра отвалила от Петропавловской крепости шлюпка с единственным пассажиром на борту. Невысокий плотный господин в цивильном костюме сидел на корме. Тонкие губы его были плотно сжаты, брови насуплены. Несколько дружных гребков, и лодка на середине реки. По команде матросы подняли весла. Пассажир нагнулся и стал копаться в тяжелом ящике, уставленном стеклянными банками с какой-то жидкостью. Из банок торчали железки. Толстые провода вели к рамам неуклюжей машины, соединенным с большими колесами, наподобие мельничных, опущенными с бортов в воду.

Шлюпку уже изрядно снесло течением, когда под руками пассажира раздался легкий треск и колеса завертелись, ударяя плицами по невской волне. Повернувшись носом против течения, шлюпка пошла, разрезая тяжелую свинцовую воду. У крепости, где собралось многочисленное начальство, раздались дружные аплодисменты.

Так или примерно так состоялось первое в мире практическое испытание электрического двигателя, сконструированного и построенного в России Борисом Семеновичем Якоби.

Его двигатель питался от батареи гальванических элементов Грове – стеклянных банок, наполненных азотной кислотой, с цинковым н платиновым электродами.

Борис Семенович Якоби (Мориц Герман) родился в Потсдаме и окончил Геттингенский университет по специальности архитектура. Однако, переехав в Россию, он, не колеблясь, принял предложение Петербургской Академии наук участвовать в комиссии по «исследованию электромагнитных притяжений и законов намагничивания железа».

В отличие от многих иных иноземцев Якоби сразу и навсегда связал свою судьбу с Россией. Он женился на русской – Александре Григорьевне Кохановской, сменил имя и принял русское подданство. По его словам, он всю свою жизнь отдал служению России, которую считал «вторым отечеством, будучи связан с ним не только долгом подданства и тесными узами семьи, но и личными чувствами гражданина». Так отвечал он на неизбежные вопросы со стороны властей к натурализовавшемуся иностранцу.

В Петербурге Якоби встретился с Ленцем, Это был счастливый случай в жизни обоих. Связанные дружбой, ученые много лет совместно трудились в новой, развивающейся области науки об электричестве. Ленд, как сказали бы мы сегодня, был теоретиком. Якоби – практиком, очень изобретательным человеком и опытным экспериментатором.

Казалось, после такого блестящего начала, каким явилось испытание электродвигателя на Неве, от Якоби следовало бы ожидать дальнейшего усовершенствования своего детища. Тем более что слава о нем прокатилась по всей Европе. Однако, написав обстоятельную статью о конструкции, принципе действия своего двигателя, Якоби проанализировал его экономическую эффективность и пришел к выводу о нецелесообразности его применения в существовавших условиях. Паровые машины были пока впереди.

Позже, занимаясь поисками более надежных источников питания для электрической машины, Якоби обратил внимание на то, что слой меди, оседающий на одном из электродов, нарастает исключительно равномерно, в точности повторяя, как негатив" все неровности и царапины на поверхности электрода. При этом осажденный слой довольно легко отдирался от электрода тонким листиком.

В практическом уме изобретателя созрело решение: он снял медную табличку с двери – на ней стояло его имя – и сунул в банку вместо одного из электродов. Через некоторое время Якоби получил точный негатив. Тогда он взял тяжелый медный пятак – и снова получил его оттиск. Чудесное и очень своевременное открытие! В России готовилась реформа перехода на денежную систему ассигнаций взамен кредитных билетов. Но дело затягивалось в связи с изготовлением точных клише, которые бы не могли подделать фальшивомонетчики.

В том же году в Петербурге Якоби организовал первую мастерскую гальванопластики. В заказах недостатка не было: статуи для Зимнего дворца и Исаакиевского собора, барельефы для Большого театра в Москве, для Петропавловского собора и многих других зданий. Более сорока пудов благородного металла израсходовано на золочение медных листов для строящегося Исаакиевского собора.

Чтобы познакомить со своим изобретением европейских ученых, Якоби сделал гальванопластическую копию с металлической, пластины, на которой было выгравировано: «Фарадею от Якоби с приветом». И послал копию в Англию. Фарадей тут же ответил: «Меня так сильно заинтересовало Ваше письмо и те большие результаты, о которых Вы даете мне такой обстоятельный отчет, что я перевел его и передал почти целиком, издателям „Философикал мэгэзин“ в надежде, что они признают новости важными для своих читателей».

И Фарадей не ошибся. На Западе заинтересовались русским изобретением, и гальванопластические мастерские стали возникать во всех странах.

Якоби создал ряд приборов, в которых так нуждалась современная ему наука. Он изобрел и построил кабельные телеграфные линии в Петербурге (Зимний дворец – Главный штаб, Зимний дворец – Главное управление путей сообщения и публичных зданий, Петербург – Царское Село).

Во время Крымской войны ученый разработал способ электрического подрыва мин.

Борис Семенович был примерно трудолюбив. Вся его жизнь без остатка заполнялась работой во славу России.

В 1845 году немецкий физик Франц Нейман теоретически обобщил результаты опытных работ Фарадея и Ленца, а другой ученый – Густав Теодор Фехиер, физик, физиолог и философ, попытался распространить на явление электромагнитной индукции теорию Ампера. Третью попытку построить теорию электричества и электромагнетизма в том же 1845 году предпринял профессор Лейпцигского университета Вильгельм Эдуард Вебер. Все они старались создать математический фундамент теории электромагнитных взаимодействий. Однако удалось это лишь Джеймсу Клерку Максвеллу в начале второй половины века.

Первую статью, «О фарадеевских силовых линиях», Максвелл написал еще студентом Кембриджского университета. Автору шел всего двадцать четвертый год…

Вот его портрет: среднего роста, темноволос. Живые карие глаза. Очень подвижен и вместе с тем немногословен, но когда начинает говорить, то манера дружелюбная, хотя его юмор не всегда и не всем понятен. Чрезвычайно любознателен, даже в самых обычных явлениях умеет видеть интересные проблемы, при этом всегда четко ставит задачу. Чужд всякой позы и крайне прост во всем, что касается собственной внешности. Нестандартный набор качеств для британского джентльмена эпохи королевы Виктории.

Английские физики, как и большинство европейских ученых того времени, были уверены в том, что все физические явления можно и должно объяснять законами чистой механики. Между тем электромагнитные феномены механическим объяснениям не поддавались. Тогда ряд ученых обратился к позитивизму. Кирхгоф, например, призывал, «не заботясь о сущности вещей и сил, составлять уравнения, которые, будучи свободными от гипотез, по возможности точно соответствовали бы миру явлений». Максвелл в раннем периоде также избегал высказывать какие-либо гипотезы об истинном механизме рассматриваемых им внутренних процессов. Он строит, по его словам, подходящие иллюстративные математические модели. И считает, что удачно подобранная аналогия может дать толчок к созданию математических формулировок, достаточно хорошо описывающих интересующие исследователя физические явления[28]28
  См.: Дорфман Я.Г. Всемирная история физики. М., 1979, с. 91


[Закрыть]
. Можно только удивляться тому, что Максвелл вывел свои уравнения с помощью логических рассуждений из сложной модели с вращающимися вихрями в качестве магнитных сил. Эти силы передавались у него частицами, игравшими роль шестеренок в зубчатой передаче. А сама зубчатая передача являлась аналогом электрического тока[29]29
  См.: Томсон О. Дух науки. М., 1970, с. 29


[Закрыть]
.

Подведя итоги рассуждениям, Максвелл отбросил большую часть этого придуманного механизма. В результате осталась чистая теория.

В 1873 году на прилавках книжных лавок появился «Трактат об электричестве и магнетизме» Максвелла. Однако читателей ожидало разочарование. Книга оказалась очень сложной. Автор тысячестраничного «Трактата» считал, что, иллюстрируя электромагнитные явления, обладающие малой наглядностью, с помощью понятных механических моделей, он сделает свои математические формулировки более доступными. На самом же деле механические модели лишь затрудняли понимание всей теории.

Одна из глав «Трактата», а именно 9-я глава IV части, называется «Основные уравнения электромагнитного поля». Однако уравнения Максвелла, по сути своей, являются скорее аксиомами электродинамики. Они сформулированы на основе всего доступного в те годы автору опытного материала, но ни в коем случае не «выведены» из опытных данных математическим путем. Ни одной минуты Максвелл не пытался строить гипотез о внутреннем микроскопическом механизме электрического поля. В соответствии с традицией европейской физики, заложенной Ньютоном, он принимал электромагнитное поле как данность и рассматривал механическую сторону электромагнитных процессов.

Позже Генрих Герц писал: «Теория Максвелла – это уравнения Максвелла». Трудно представить, что четыре уравнения, четыре аксиомы, введенные гением Максвелла в арсенал науки, за сто лет не были опровергнуты или хотя бы опротестованы ни одним фактом, ни единым проявлением электромагнитного поля, которые накопились с тех пор в бесконечном реестре физиков. Предложенные в середине прошедшего столетия, они в употреблении и сегодня.

Всю жизнь Максвелл, довольно замкнутый человек, не стремившийся распахивать свою душу перед посторонними, любил стихи. Он не только любил их читать, но писал и сам. В этом не было ничего удивительного – в XIX веке многие баловались рифмой. Стихи Максвелла довольно часто публиковались, правда в основном на страницах научных и научно-популярных журналов. Может быть потому, что их читатели могли не только понять смысл и оценить художественные достоинства, но и расшифровать авторскую подпись. Максвелл подписывался псевдонимом – dp/dt.

Расшифровывается это выражение довольно своеобразно. Дело заключалось в том, что в учебнике физики, написанном друзьями Максвелла – Вильямом Томсоном и Питером Тэтой, второе начало термодинамики, то самое, что не позволяет построить вечного двигателя «второго рода», записывалось в виде: dp/dt = JCM, Поскольку знак равенства делает обе части уравнения равноправными, James Clerc Maxwell – Джеймс Клерк Максвелл вполне имел право взять в качестве подписи левую часть, если в правой оказывались его инициалы.

Глава 4

«Русский свет»

«Применение электрической энергии в России за последние годы значительно развилось, электротехническая же промышленность в ней до последнего времени находится в младенческом возрасте». Это строчки из толстой книги профессора Артура Вильке «Промышленность и техника», том III (Спб., 1904).

Действительно, в начале XX века в Петербурге, а потом в Петрограде электротехнической промышленности почти не было. И вместе с тем в городе работало около 200 электрических станций! Не удивляйтесь. Я не напутал. Подчас такая электростанция обеспечивала энергией всего один дом. Хорошо, если это был завод. Но нередко электрические машины жужжали в подвалах частных особняков.

Но продолжим цитирование труда профессора Вильке. Человек он был знающий, книжку составил неплохую и, скорее всего, правдивую. Как же описывает он состояние российской электротехники?

"…Понятно, что при существовании стольких применений является громадный спрос на разного рода электромашины, электрические провода и вообще всякие электротехнические принадлежности. Этому спросу русские заводы удовлетворить не могут, и он удовлетворяется преимущественно иностранными заводами, имеющими в России своих представителей.

Однако некоторые производства достигли и в России довольно высокой степени развития. Таково, например, производство изолированных кабелей и проводников. В Петербурге и Москве, главным образом, имеется ряд кабельных заводов, изготовляющих всевозможные сорта кабелей и проводов, ничуть не уступающих иностранным. Из этих заводов самые крупные – фирма Сименс и фирма Рибен…

Однако русские заводы не в силах удовлетворить спросу на кабели и проводники, и значительная доля их получается из-за границы…

Много более или менее крупных заводов и мелких мастерских приготовляют разного рода мелкие приборы, требуемые при электрических установках, как-то: предохранители, выключатели, реостаты, патроны для ламп и т. д., а также арматуру для ламп. Однако они еще не удовлетворяют спросу на такие предметы, и огромное количество их ввозится из-за границы.

Точно так же не приготовляются в России электрические измерительные приборы и электрические счетчики…

Калильные лампы в России совсем не фабрикуются. Устраивавшиеся для этой цели русские заводы не выдерживали конкуренции иностранных и быстро закрывались…

Дуговые лампы строятся некоторыми заводами, главным образом фирмой Сименс и Гальске, но все же большинство их получается из-за границы…

Что касается электромашин, т.е. динамо-машин, электродвигателей и трансформаторов, то в России производства их почти не существует. Единственный завод Сименс и Гальске в Петербурге готовит их в сколько-нибудь значительном числе. Этот завод, являющийся самым большим электротехническим заводом России (до 150 служащих), выпускает ежегодно динамо-машин и двигателей общей мощностью до 6000 киловатт…"

Пожалуй, достаточно. Картина весьма впечатляющая для характеристики, особенно если учесть, что здесь ничего не выдумано. Это свидетельство современника о стране, где огромное количество изобретений русских инженеров и электротехников могло бы составить мировую славу.

Несмотря на отставание, столь красочно описанное профессором Вильке, именно в области электротехники русская инженерная мысль в конце XIX столетия добилась особенных успехов. В 50-х годах интерес общественности стали привлекать опыты с электрическим освещением дугой, открытой В.В. Петровым. Уже в 1849 году на петербургских улицах вспыхнули первые рукотворные звезды, демонстрируя жителям столицы свой нестерпимый блеск. Конечно, это были пока только кратковременные демонстрационные, опыты.

В первых лампах угли быстро сгорали, и дуга разрывалась. У каждого фонаря приходилось ставить человека, вручную сближавшего электроды по мере их сгорания. Поэтому был необходим автоматический регулятор. Над решением этой проблемы упорно работали изобретатели в разных странах. И вот в 1855 году в иностранных журналах появилось сообщение о создании негаснущей дуговой лампы – «электрического солнца» русским изобретателем Александром Шпаковским, преподавателем физики Павловского кадетского корпуса.

Летом следующего года десять «электрических солнц» Шпаковского устанавливаются на площади перед Лефортовским дворцом в Москве. Там должен был состояться торжественный прием по случаю коронации Александра II. После окончания торжеств подполковник Шпаковский показал невиданный дотоле осветительный прибор своим воспитанникам-кадетам, вызвав их откровенный восторг.

В лаборатории корпуса Александр Ильич плавил в нестерпимо жарком пламени дуги различные металлы, однажды даже сжег алмаз… Затаив дыхание, следили зрители за увлекательными экспериментами. Вот только кончились они печально. Увлеченный происходящим, Александр Ильич нечаянно взялся обеими руками за оголенные токонесущие проводники и получил сильнейший электрический удар. Ладони рук и пальцы обгорели едва не до костей. Экспериментатор долго болел. Да и поправившись, до конца своей жизни уже далеко не с той ловкостью мог работать руками. Однако изобретательство он не оставил, лишь перешел к другим отраслям техники. Поражаешься сегодня широте его интересов. Шпаковский занимался кроме изобретения электротехнических приборов конструированием сигнальных фонарей для флота, паровых котлов и пожарных локомобилей, а также всевозможных насосов. Он изобрел паровую форсунку и много сделал для внедрения в практику жидкого топлива для паровых котлов – нефти и мазута. Шпаковский был пионером научной фотографии в России и, выйдя в отставку, занимался в Кронштадтских минных мастерских ракетными составами и порохами.

Среди технической интеллигенции Петербурга он был уважаемым человеком. В 1880 году, когда в Русском техническом обществе открылся VI (электротехнический) отдел, он был избран в него наряду с самыми видными электриками России – Чиколевым, Лачиновым, Яблочковым и другими.

В том же году во время испытаний самодвижущейся мины произошел внезапный взрыв устройства. Изобретателя тяжело контузило. Он не мог стоять на ногах, поскольку был поврежден центр равновесия в организме. Правда, с помощью матросов он еще некоторое время пытался подходить к верстаку и рабочему столу, но здоровье оказалось окончательно подорванным. Через год Александр Ильич Шпаковский скончался в госпитале, не оставив после себя даже минимальных средств, необходимых для похорон.

27 мая 1872 года в Петербурге состоялось первое публичное заседание Русского физического общества. Вместе с профессорами университета – Дмитрием Ивановичем Менделеевым, Федором Фомичом Петрушевским, а позднее и Александром Степановичем Поповым – в организации этого общества, сыгравшего такую видную роль в становлении и развитии русской физики, принимал деятельное участие выдающийся физик и электротехник Дмитрий Александрович Лачинов. Прекрасный, душевный человек, очень отзывчивый, по свидетельствам современников, товарищ, остроумный собеседник недюжинного ума, он очень скоро стал настоящей душою небольшого, но дружного кружка петербургских физиков. Лачинов, по словам его многолетнего ассистента и близкого друга Г.А. Любославского, «вне своих научных занятий… всегда являлся живым, бодрым, впечатлительным человеком, любящим общество, музыку, спорт. Куда бы он ни появлялся, всегда и неизменно… вносил своим появлением оживление».

Поступив по окончании университета в Земледельческий институт (позже – Лесной), Лачинов прежде всего реорганизовал и переоборудовал физическую лабораторию. Темой своих опытов и самостоятельных работ выбрал исследование электрической дуги. В то время впервые осветительные приборы, изобретенные Лодыгиным и Яблочковым, были уже мировой сенсацией. В Англии организовали даже специальную парламентскую комиссию для сравнения достоинств газового и электрического освещения.

В Петербурге в этот период создавался первый русский электротехнический журнал «Электричество». И первый номер его, вышедший в 1880 году, открывался статьей Д. А. Лачинова «О результатах, добытых английской парламентской комиссией по электрическому освещению». Дмитрий Александрович подробно информировал русских читателей о признании английскими учеными бесспорного преимущества перед газовым освещением «русского света», который давали удивительные дуговые свечи изобретателя Павла Яблочкова.

Перед электриками всего мира в полный рост вставала проблема передачи энергии на расстояние. Здесь уместно напомнить, что с увеличением длины проводов растет их сопротивление, а следовательно, увеличиваются и потери мощности на нагревание самой линии передачи. И к потребителю в конце линии приходит значительно меньшая мощность. Единственный способ уменьшить потери инженеры видели в увеличении толщины проводов. Но это упиралось в экономическую нецелесообразность таких линий.

В 1874 году после серии опытов изобретатель, артиллерийский офицер Федор Аполлонович Пироцкий сформулировал новые условия для дальней передачи. Он писал: «При малом же внутреннем сопротивлении в машинах они могут действовать лишь при малом только внешнем сопротивлении, т.е. при недлинной проволоке». Получалось, что для обеспечения дальних передач нужно было уменьшить ток во внешней цепи. Но как? Пироцкий найти решения не сумел и стал заниматься опытами по передаче электроэнергии по рельсам железных дорог. Тогда за разработку этой важнейшей проблемы времени взялся Лачинов. В сравнительно небольшой статье, напечатанной в журнале «Электричество», он изложил свои выводы. Это была серьезная, основополагающая работа, выполненная на высоком научном уровне. Дмитрий Александрович рассмотрел практически все основные вопросы, касающиеся современной ему теории электрогенераторов, двигателей и линий передач. Согласно выводам Лачинова, при увеличении сопротивления проводов, то есть с ростом длины линий передачи, для сохранения коэффициента полезного действия следовало увеличивать скорость вращения машин как на передающем, так и на приемном концах линии. Увеличивать скорость пропорционально корню квадратному из сопротивления. Он писал: «Если, например, увеличим (сопротивление проводов – А.Т.) в 100 раз, то при передаче того же числа лошадиных сил скорость будет десятерная». И тут же в примечании добавлял: «…а сила тока одна десятая первоначальной». При увеличении скорости вращения якорей генераторов, понятно, росла их электродвижущая сила. Так был сформулирован основной принцип передачи электроэнергии на большие расстояния – линии должны быть высоковольтными. К сожалению, должной оценки его труды не получили. Идеи линий передачи электроэнергии на большие расстояния были злободневны. Эту задачу решали в разных странах, В Америке ею занимался Эдисон, в Германии – служащий фирмы «Сименс – Гальске» некто Оскар Фрелих, во Франции – Марсель Депре…

На Мюнхенской электротехнической выставке в 1882 году Депре построил и демонстрировал первую в Европе силовую электропередачу Мисбах – Мюнхен, передававшую энергию на расстояние 57 километров по обыкновенной телеграфной проволоке. Это достижение произвело впечатление. Теперь можно было сказать, что электричество шло не только на смену громоздкой и неэкономичной паровой машине, оно давало возможность в будущем использовать огромные запасы низкосортного топлива, до того понапрасну пропадавшего вдалеке от промышленных центров. Скрытая энергия могла по проводам доставляться куда нужно. Мало того, электрические машины-генераторы вкупе с линиями передачи позволяли приступить к использованию энергии горных рек и водопадов. Перспективы открывались головокружительные, если бы… Ах, это «если»! Как оно мешает всегда непрерывному движению прогресса в любой отрасли…

Дело заключалось в том, что высокое напряжение в линии было опасно для людей и неудобно для техники. Оно требовало улучшения изоляции и осторожности в обращении. Высокое напряжение, столь необходимое для экономичной передачи, у потребителя надо было снижать, этого требовала вся прикладная электротехника. Но как это делать, никто не знал.

Рассказывая о судьбе Дмитрия Александровича Лачинова – одного из первых русских теоретиков новой науки электротехники, я лишь упомянул об изобретении осветительных приборов. Однако их история заслуживает более подробного рассказа. Именно электрическое освещение на первых порах стимулировало совершенствование электрических машин. Та же причина заставила впервые заговорить о централизованном производстве электроэнергии, о создании «фабрик электричества».

Мечта использовать электричество для освещения родилась в тот самый момент, когда в «темном покое» Петербургской медико-хирургической академии под руками Василия Петрова вспыхнула первая дуга. А когда изобретатели познакомились с тепловым действием тока, создание электрического освещения превратилось для многих в навязчивую идею.

Темным осенним вечером 1873 года петербуржцы спешили на Пески (ныне район Советских улиц). Ожидание неизвестного, почти чуда, волновало людей. Вот уже несколько дней, как бригада рабочих под руководством высокого, статного господина в инженерной фуражке вела какие-то работы. Заменяли керосиновые лампы в двух фонарях на пузырьки, подводили к ним провода от громоздкой машины.

Знатоки охотно растолковывали суть происходящего: «Керосиновое освещение сравнивать с электрическим станут»… В Петербурге рано смеркается осенью. Многие из собравшихся спотыкались о провода, которые лежали прямо на панели. Плотный господин в инженерной фуражке бранился в усы. Вот он полез по лестнице к одному из фонарей, что-то там прикрутил и махнул рукой. Застучала паровая машина. Движение от ее маховика передавалось ременной передачей на «световую машину». Где-то затрещали искры, и вдруг пузырьки на столбах вспыхнули ярким, ослепительным светом… Люди вынимали из карманов припасенные газеты, сравнивали, на каком расстоянии от старого и от нового фонаря можно разобрать буквы. Шум воцарился необыкновенный… Наконец вспомнили об изобретателе и кинулись поздравлять: «Господин Лодыгин, это восхитительно! Господин Лодыгин, это необыкновенно!» Через полчаса свет погасили, и устроители испытаний поехали пить шампанское.

В кругу друзей Лодыгин рассказывал, как однажды, спроектировав изображение «вольтовой дуги» на экран (именно так в ту пору называлась дуга Петрова), он обратил внимание на то, что свет исходит лишь от самых кончиков углей. «А что, ежели раскалить весь уголь?» – подумал он. Так ему в голову пришла мысль об использовании света раскаленного угля, а не дуги. Чтобы уголь не перегорал, Александр Николаевич заключил его в герметическую стеклянную колбу. «Как только весь кислород выгорит, – рассуждал он, – так уголь перестанет разрушаться». С этой идеи и начались его поиски, опыты и пробы.

В 1874 году Александр Николаевич Лодыгин получил привилегию на производство ламп своего изобретения и организовал товарищество. Правда, капитал составлял всего 10 тысяч рублей. С такими средствами выдержать конкуренцию иностранных фирм было невозможно. И через год с небольшим «Товарищество электрического освещения А.Н. Лодыгин и К°» потерпело крах. Председатель его вынужден был поступить на работу в Арсенал слесарем.

Другой выдающийся русский электротехник Петр Николаевич Яблочков поразил мир, представив на Лондонской выставке физических приборов в 1876 году удивительную электрическую «свечу» своего изобретения. Она стала подлинным гвоздем программы выставки. А год спустя предприимчивый француз Денейруз добился разрешения на учреждение акционерного общества, в котором предложил Яблочкову солидный пакет акций. Скоро матовые колпаки, в которых блистали нестерпимым блеском «свечи Яблочкова», украсили улицу и площадь Оперы. Из Парижа «русский свет» шагнул в другие города, пересек границу. «Из Парижа электрическое освещение распространилось по всему миру, – писал сам Яблочков, – дойдя до дворца шаха персидского и короля Камбоджи». Русский изобретатель стал европейской знаменитостью.

А начинал он трудно. Выходец из семьи обедневшего дворянина, Павел Яблочков с детства проявлял склонность к изобретательству и конструированию. Он учился в гимназии, потом в Инженерном училище, откуда в чине подпоручика был направлен на службу в саперный батальон. Однако пятнадцати месяцев службы в гарнизоне Киевской крепости вполне хватило, чтобы отбить у молодого человека всякую охоту к военной службе. И Яблочков «по болезни» выходит в отставку. Он мечтал заняться электротехническими опытами, но не хватало образования. И он сам понимал это. В то время в России было единственное электротехническое учебное заведение, основанное по инициативе академика Бориса Семеновича Якоби, – Техническая гальваническая школа, которая готовила специалистов по минной электротехнике. Но принадлежала она инженерному ведомству и вход в нее для гражданских лиц был закрыт. Тогда Яблочков снова возвращается на действительную службу и добивается направления в школу.

Год учебы, и снова саперный батальон, и чисто административные обязанности заведующего оружием. Павел Николаевич понимал, что именно в армии электричество имеет огромные перспективы. Но рутинная обстановка, консерватизм и застой гарнизонной жизни не давали никакой надежды на перемену обстановки. И, отслужив положенный год, Яблочков окончательно покидает службу.

Он получает должность начальника телеграфа Московско-Курской железной дороги, но все его помыслы и устремления направлены на реализацию всевозможных электротехнических изобретений, проекты которых теснятся у него в голове. Однако изобретательская деятельность требует средств. Яблочков влезает в долги. И когда они перерастают его финансовые возможности, решает уехать в Америку.


    Ваша оценка произведения:

Популярные книги за неделю