355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Мир электричества » Текст книги (страница 13)
Мир электричества
  • Текст добавлен: 17 октября 2016, 00:25

Текст книги "Мир электричества"


Автор книги: Анатолий Томилин



сообщить о нарушении

Текущая страница: 13 (всего у книги 22 страниц) [доступный отрывок для чтения: 9 страниц]

«Термомагнетизм» Зеебека

Прежде чем начать рассказ о первых количественных законах электричества, позволивших перейти к промышленному применению «куриозных» аппаратов и породивших в будущем такую мощную отрасль производства, как электротехника, следует вспомнить еще о некоторых открытиях, совершенных в это же время.

В 1821 году жил в Берлине Томас Иоганн Зеебек – врач по образованию. Врачебной практикой он не занимался и, имея средства к существованию, довольно давно вел физические исследования. Имя его было настолько известно в научном мире, что в 1814 году Берлинская академия наук приняла его в состав своих членов.

Зеебек пытался обнаружить действие на магнитную стрелку замкнутого контура из разнородных металлов без включения в него вольтова столба. Он замыкал медную катушку гальванометра висмутовым диском, и каждый раз, когда его рука нажимала на один из контактов, магнитная стрелка чуть-чуть отклонялась. Почему?.. Может быть, влажные руки создавали условия для возникновения «вольтаического тока»?.. Он подложил под пальцы стекло и снова надавил на контакт. Стрелка не двигалась. Прекрасно!.. Но радоваться было рано. Через некоторое время стрелка все-таки отклонилась. Почему же не сразу, а через некоторое время? Что изменилось, когда он положил под пальцы стекло? Устранен непосредственный контакт спая металлов с пальцами, но там же осталось тепло рук, которое теперь нагревает этот спай с некоторым запозданием из-за стеклянной прокладки. Не тепло ли – причина дополнительного магнетизма, вызывающего отклонение магнитной стрелки?

Через некоторое время Зеебек написал статью, в которой заявил, что «теплота, которая сильнее передается одному из мест контакта металлов, является причиной магнетизма». А посему он и назвал открытое им новое явление термомагнетизмом!

Зеебек обнаружил, что эффект, названный им магнитной поляризацией, усиливается как с увеличением числа «термомагнитных» пар, так и с ростом разности температур. Он сделал вывод, что даже магнетизм Земли должен иметь ту же природу и рождается от нагревания вулканами пояса руд и металлов, опоясывающего Землю.

Как только физики узнали о новом открытии, опыты Зеебека были повторены во многих лабораториях. Ханс Кристиан Эрстед и французский физик и математик Жан Батист Фурье пришли к выводу, что это вовсе не термомагнетизм, а термоэлектричество и что Зеебек, исходя из неправильных представлений, ошибся и в сути явления. Они составили батареи из большого числа металлических пар и вскоре, правда, не без труда, получили от них небольшие электрические искры. Теперь уже сомнений не оставалось: тепло, подведенное к спаю (или контакту) разнородных металлов, рождало не магнетизм, а электричество. И несмотря на то что первооткрыватель еще долго сопротивлялся, стараясь доказать свою правоту, явление получило название термоэлектричества.

Через тринадцать лет после открытия Зеебека парижский часовщик, бросивший свое ремесло, Жан Шарль Атаназ Пельтье обнаружил, что в местах спаев двух разнородных металлов, в зависимости от направления тока, тепло либо выделяется, либо поглощается. Явление получило название «эффект Пельтье».

Так новые открытия все ближе и ближе подталкивали ученых к необходимости признания того, что силы природы могут превращаться одни в другие или переходить из одной формы в другую.

Сегодня пока еще термоэлектрические генераторы используются в качестве маломощных источников электроэнергии. Их устанавливают на навигационных буях, на маяках. Множество полупроводниковых термоэлементов, соединенных между собой, нагреваются солнечным теплом. Тепловая энергия непосредственно переходит в электрическую, но… коэффициент полезного действия таких установок пока слишком мал.

Обратный эффект, открытый Пельтье, используется шире. Но у открытия Зеебека и Пельтье есть будущее. И скорее всего, оно будет сильно отличаться не только от того, каким виделось первооткрывателям явлений, но и от того, каким видим его мы сегодня. Полупроводниковая, криогенная техника в сочетании с термоэлектрическими явлениями еще не сказала своего последнего слова.

Уильям Стёрджен и «магнитные Биллы»

На заседании Британского общества искусств, которое состоялось 23 мая 1825 года, за длинным столом, заставленным различными электрическими приборами и внушительной батареей из вольтовых столбов, сидел высокий джентльмен лет сорока с лишним. Выправка и благородное, хотя и несколько грубоватое лицо выдавали в нем отставного военного.

Когда члены общества собрались, председатель коротко представил гостя: «Мистер Уильям Стёрджен – эсквайр», – и сказал, что мистер Стёрджен любезно согласился познакомить их со своим изобретением и показать ряд приборов для электромагнитных экспериментов.


Уильям Стёрджен (1783–1850)

После открытия Эрстеда опыты с электричеством и с магнитами вновь стали популярны среди образованной публики. Поэтому собравшиеся не без интереса следили за ловкими руками экспериментатора, демонстрировавшего по большей части знакомые всем и лишь слегка усовершенствованные приборы. Но вот Стёрджен сделал паузу и с некоторой торжественностью открыл большой футляр. Там лежал согнутый подковой черный лакированный стержень из мягкого железа, обмотанный блестящей медной проволокой.

Изобретатель положил прибор на весы. Английская система мер всегда отличалась замысловатостью, и я не стану приводить точный вес в английских единицах. Всего прибор потянул граммов на двести. Экспериментатор подвесил его на штатив и подключил к вольтовой батарее. Концы подковы, обретя магнитную силу, притянули к себе железную полосу. Стёрджен стал нагружать полосу гирями: одна, другая, третья… – полоса держалась. Пятая, десятая… Лишь когда вес притянутого железа в восемнадцать раз превзошел вес самого магнита, груз оторвался.


Электромагнит конструкции Стёрджена


Один из первых электромагнитов

Это было неслыханно! Как удалось Стёрджену настолько увеличить подъемную силу? Ведь ни один естественный магнит не в состоянии поднять и пятой доли такого груза… И вообще, кто такой этот джентльмен?

Прошло всего несколько дней, и Лондон узнал все подробности об изобретателе. Оказалось, что Уильям Стёрджен родился в семье сапожника. И хотя с детства тянулся к книгам, до девятнадцати лет был практически малограмотен, находясь в обучении у коллеги родителя по цеховой принадлежности. Предначертанная судьба, по-видимому, не устраивала подмастерье. И в один прекрасный день парень удрал от благодетеля в Вест-Морленд, где поступил в армию.

Рядовому Стёрджену определенно повезло. Сержант, у которого он оказался в подчинении, был начитанным и добрым человеком. Видя тягу молодого солдата к знаниям, он принялся снабжать Стёрджена популярными книжками, которые тот читал в свободное время. Последнего оказывалось достаточно, потому что Уильям скоро научился ставить несложные опыты по химии и физике. Благодаря им молодой человек понял, что знаний его слишком мало, чтобы разобраться даже в простых описаниях. И тогда с той же настойчивостью, с какой делал все, он стал учиться.

Через пятнадцать лет со дня побега из отчего дома Уильям Стёрджен стал отличным механиком, умелым экспериментатором и образованным человеком. Он был знаком с латынью и естествознанием, немного – с математикой и физикой. Выйдя в отставку, он купил токарный станок, инструменты и принялся за изготовление приборов для любителей научных развлечений. В этом деле он добился определенного успеха, а вместе с успехом – и заказов. Заказы вели к полезным знакомствам.

Благодаря поддержке одного из влиятельных лиц Стёрджен получил место лектора в Военной академии Ост-Индской компании.

И вот его первое публичное выступление в Лондоне с изобретенным электромагнитом. Солдат-ученый! Даже для невозмутимого английского общества это не могло остаться незамеченным.

Но что, собственно говоря, открыл Стёрджен, что изобрел? Однорядная катушка, которая проявляла магнитные свойства, стоило пропустить по ней электрический ток, являлась не чем иным, как «соленоидом Ампера». А усиление силы магнитов в присутствии мягкого железа тоже не являлось особой новостью. Получалось, что объединение одного известного с другим известным в целом заслуживает славы изобретения? Именно так! В объединении частей известного для получения нового качества лежит суть изобретательства. И Стёрджен – подлинный изобретатель электромагнита. Ему первому в голову пришла мысль согнуть железный прут подковой. Сколько с тех пор прошло времени, а подковообразные магниты мы знаем до сих пор.

Со временем его имя становилось все более и более известным. О нем говорили ученые. О его магните писали физики. В доме Стёрджена появились первые ученики. И среди них Джеймс Прескотт Джоуль, сын богатого манчестерского пивовара, в будущем – один из первооткрывателей закона сохранения энергии, не питавший склонности к профессии отца.


Джеймс Прескотт Джоуль (1818–1889)

Стёрджен написал несколько статей и был немало раздосадован, когда снобы из «Философикл трансэкшенс» отказались их опубликовать. Он заявил себя издателем нового научного журнала «Анналы электричества Стёрджена», где, к слову сказать, появились и первые статьи Джоуля. Джеймс Прескотт Джоуль был талантливым учеником, и его учитель был счастлив этим обстоятельством. Продолжая работы учителя, Джоуль, например, сконструировал многополюсное электромагнитное устройство массой 5,5 кг, которое удерживало более тонны груза. Это не могло не поражать окружающих.


Подъемный магнит для железа

В 1840 году, когда Стёрджену было уже под шестьдесят, манчестерцы предложили ему пост директора своего музея. Место почетное, но не прибыльное. А изобретатель по-прежнему тратил большую часть дохода на электрические и магнитные опыты. Десять лет спустя он умер, так и не дождавшись ни признания, ни почестей. Многим из англичан сегодня даже имя его не знакомо. И только старая надпись на могильной плите напоминает: «Здесь лежит изобретатель электромагнита».

Электромагниты захватили воображение людей и стали модой. Правил для расчетов и конструирования не существовало. Изобретатели стали опытным путем увеличивать их притягивающую силу. Врачи использовали электромагниты для лечения, шарлатаны – для предсказаний судьбы, фокусники и любители научных развлечений – для показа чудес.

Одно из первых применений мощных электромагнитов на практике началось с конструированием подъемных кранов на сталелитейных заводах. Это нововведение вызвало сначала целую бурю, поскольку предприниматели тут же уволили рабочих, занятых раньше переноской железа.

Правда, со временем кое-кого из уволенных удалось приспособить к делу. И тоже не без помощи электромагнита. В цехах и на проезжих дорогах появились люди с тяжелыми батареями за спиной и с электромагнитами в руках. «Магнитные Биллы», – называли их обыватели. В обязанность «магнитных Биллов» входила очистка улиц и помещений от железного мусора. Особенное значение это стало иметь, когда по дорогам, теряя болты и гайки, побежали первые автомобили.

Стали применять электромагниты и на мельницах для очистки зерна, на рудниках – для разделения полезной и пустой породы.


Подъемный кран XIX века с электромагнитным захватом

Во второй половине XIX века свойства электромагнита привлекли внимание военных. В Соединенных Штатах Америки в военном ведомстве проходили опробирование два электромагнитных проекта. Один из них заключался в создании сверхсильного магнита для защиты крепостных стен прибрежных фортов от артиллерийского обстрела. Сверхмощный магнит должен был притягивать к себе вражеские снаряды и отклонять траектории их полета. Сегодня такая идея кажется смешной. Но сто лет назад на одном из фортов ее пытались воплотить в жизнь. Под командой бравого офицера матросы соединили рельсами казенные части двух старых осадных орудий, получив внушительную раму в форме буквы «П». Стволы пушек имели не меньше полуметра в диаметре и около пяти метров в длину. На них намотали обмотки из многих миль торпедного кабеля и пропустили по кабелю ток…

Очевидцы рассказывали, что «уже за десять миль в открытом море стрелки корабельных компасов теряли уверенность». Однако для того, чтобы притягивать снаряды противника, сила гигантского электромагнита была все же недостаточной.

Второй проект касался создания магнитного корабля-ловушки. Для этой цели кабелем обмотали целый броненосец и пустили по кабелю ток. Получился плавающий электромагнит со стальным сердечником, который должен был «сбивать с толку» магнитные стрелки компасов на судах противника. Однако и эта затея потерпела фиаско. Магнитная защита компасов на кораблях легко компенсировала влияние корабля-ловушки.

Много было всевозможных попыток приспособить магнитные силы для службы человеку. И многое получилось. Оглянитесь вокруг, сколько электромагнитов работает в самых обычных домашних приборах. Тут и телефон, и магнитофон, даже простой дверной звонок… Нет, Уильям Стёрджен вполне достоин того, чтобы мы сохранили в своей памяти его славное имя.

От фантастики к реальности

Во второй половине XX века, в годы первых космических полетов, снова вспыхнул интерес к электромагнитным устройствам, предназначенным для ускорения макроскопических тел. Космическим ракетам при запуске приходится тащить с собой наверх огромную массу топлива. Полезный груз составлял всего несколько процентов от стартового веса. А нельзя ли придумать устройство, способное поднимать тот же груз в космос без «накладных расходов»?

Читатель наверняка помнит идею Жюля Верна: послать на Луну корабль с людьми, выстрелив им из огромной пушки. Идея неприемлемая в связи с гигантскими перегрузками, которые не вынесет человек. А если без людей? Расчеты показывают, что в принципе такая установка может быть создана, если заменить пороховую пушку электромагнитной.

И вот в Канберре лаборатория национального Австралийского университета, работая совместно с американскими лабораториями в Лос-Аламосе и Ливерморе (Калифорнийский университет), а также совместно с фирмой «Вестингауз», построила «рельсовую пушку». Это некое подобие простейшего электромагнитного ускорителя, состоящего из двух проводящих ток рельсов, вмонтированных в трубу, напоминающую артиллерийский ствол. В систему посылаются импульсы электрического тока. Между рельсами быстро движется плазменный разряд – электрическая дуга, подталкивающая вперед «снаряд» из непроводящего материала. Последнее достижение – выталкивание «снаряда» (им являлся пластмассовый кубик массой 3 г) со скоростью до 10 км/с. Этого уже достаточно, чтобы вывести груз на орбиту. К сожалению, выйдя из канала ствола, «снаряд» мгновенно разрушился под воздействием силы, создающей ускорение, которое в миллионы раз превзошло ускорение свободного падения.

В 1974 году изобретатели предложили электрическую пушку – «Массовый ускоритель» для доставки на Землю с Луны минералов, руд, богатых алюминием. Позже теоретики предложили построить подобные же «массовые ускорители» на Земле и использовать их для запуска космических аппаратов. Только длина таких «пушек» должна быть несколько километров.

Георг Ом – просьба не путать со знаменитым братом

В широко известном сочинении конца XIX века «Очерк истории физики» Фердинанда Розенбергера в одном из примечаний написано: «Георг Симон Ом (не смешивать с его братом Мартином Омом, знаменитым математиком)…» Прекрасный пример исторической несправедливости современника. Кто из нас знает сегодня «знаменитого математика» Мартина Ома, получившего известность в первой половине XIX века в связи с построением арифметики натуральных чисел? Пожалуй, только специалисты. Тогда как имя Георга Ома знакомо всем.

В Кёльне, на одной из боковых улочек, отходящих от площади перед знаменитым собором, на глухой стене бывшей церковной школы, выкрашенной пронзительной охрой, висит металлическая плита с барельефом и надписью, гласящей, что здесь учительствовал Г. С. Ом. Скромная черная доска на глухой стене. Между тем именно Георг Симон Ом дал в руки ученым один из первых количественных законов электричества.

Что мы называем законом природы? Прежде всего устойчивое, повторяющееся и очень существенное соотношение между наблюдаемыми явлениями. Законы природы независимы от нашего желания и вообще от сознания людей. Они определяют, как одно явление взаимодействует с другим, и какой результат при этом должен получиться. Все в нашем устойчивом мире детерминировано, все подчинено определенным правилам. Мы их еще далеко не все знаем. И вот открытие (точнее – познание) законов природы является главной задачей естествознания.

В физике электрических явлений нужда количественной оценки разнообразных действий гальванизма ощущалась давно, и многие пытались найти непреложные правила – законы. Это и сумел сделать Ом.

Георг Симон Ом родился 16 марта 1787 года в городе Эрлангене, в семье ремесленника-слесаря. Отец его был достаточно умным человеком, чтобы внушить своим сыновьям любовь к учению. Поэтому, окончив гимназию, Георг поступил в Эрлангенский университет.


Георг Симон Ом (1787–1854)

Биографы туманно намекают на то, что учебу он оставил, не закончив курса. Но с другой стороны, он вроде бы некоторое время был приват-доцентом в том же университете и преподавал математику… Тут есть какая-то неувязка. Но оставим ее на совести историков.

Доподлинно же известно, что позже, до 1817 года, он был школьным учителем и кочевал из школы в школу, из одного города в другой. В промежутках между уроками учитель математики Георг Симон Ом занимался весьма увлекательным делом – физическими исследованиями, в том числе опытами с гальваническими батареями.

В то время многие физики пытались выяснить, как зависит действие гальванической батареи от качества и от рода металла, из которого сделана проволока, замыкающая ее полюсы. Сделать это было нелегко, поскольку электродвижущая сила любой гальванической батареи быстро падала. Восстанавливалась она лишь постепенно. Такая неустойчивость в работе очень мешала исследователям. И потому, как только Зеебек сконструировал термоэлемент, дававший ток постоянной силы, проблема была решена. Ому о термоэлементе рассказал немецкий физик Иоганн Поггендорф – издатель журнала «Аннален дер фюзик», бывший в курсе всех научных новостей своего времени.

В 1826 году в своей крохотной лаборатории в Кёльне Георг Ом соорудил элемент, состоящий из висмутового стержня, впаянного между двумя медными проволоками. Опустив один из спаев в кипящую воду, а другой в мелко наколотый лед, он приступил к опытам. Скоро Ом пришел к выводу, что электрический ток ведет себя подобно водному потоку в наклонном русле: чем больше перепад уровней и свободнее путь, тем поток сильнее. Так же и с током: чем больше электродвижущая сила батареи и меньше сопротивление току на его пути, тем больше сила тока. Применяя в своих опытах проводники из разных материалов, разной длины и поперечного сечения, Ом установил, что сила тока в цепи при постоянном источнике электродвижущей силы (он называл это «разностью электро-скопических сил») обратно пропорциональна сопротивлению проводника.

В 1827 году из печати вышла большая монография Ома «Гальваническая цепь, разработанная математически доктором Омом». Однако местные физики не слишком благосклонно отнеслись к результатам его работ, поскольку в опытах с вольтовым столбом применение простого правила Ома не согласовывалось с результатами эксперимента.

В других странах его работы пока известны не были. Профессор прикладной физики Парижской школы искусств и ремесел Клод Серве Пуйе в октябре 1831 года сообщил Парижской академии, что открыл количественное соотношение между электродвижущей силой, силой тока и сопротивлением. При этом он ни словом не упомянул Ома. Правда, позже вынужден был признать, что читал сочинение немецкого физика о гальванической цепи и, пожалуй, согласен с тем, что Георг Ом сформулировал этот закон первым. Благодаря этой довольно скандальной истории о работах Ома узнали и другие французские физики. Узнали о его работах и в Англии.

В 1842 году Лондонское королевское общество наградило Ома почетной золотой медалью Коплея и избрало его своим членом. Георг Ом оказался вторым немцем, удостоенным этой чести. Чарлз Уитстон, изобретатель широко распространенного измерительного прибора, «моста сопротивлений», а также другой измерительной аппаратуры, писал, что «наконец-то столь долго господствовавшие туманные представления количества и напряженности уступили место определенным понятиям сил и сопротивлений, установленным Омом».

В 1849 году, когда Ому уже исполнилось шестьдесят два года, его пригласили в Мюнхенский университет на должность экстраординарного профессора. И лишь за два года до смерти произвели в ординарные профессоры. Всю жизнь Ом был великим тружеником. И всю жизнь его преследовали неудачи. Он сделал ряд прекрасных работ по акустике и установил важный закон о восприимчивости человеческим ухом простых гармонических колебаний, но труды эти признания не получили. Лишь через восемь лет после смерти Ома Гельмгольц смог доказать справедливость его выводов. В конце 40-х годов Георг Симон Ом задумал создать теорию молекулярной физики, но успел написать и издать всего один том. В 1853 году его наградили орденом Максимилиана «За выдающиеся достижения в области науки». Наконец-то признание пришло к нему. Но в 1854 году внезапный удар лишил его возможности насладиться почестями, исследовать и жить.

Правило Ома оказалось настоящим законом. Все теоретические и опытные проверки показали его точность. И сегодня закон Ома, гласящий, что в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи, является одним из трех китов, на которых стоит электротехника.

Через двадцать семь лет после смерти Ома Электротехнический съезд в Париже предложил назвать его именем общепринятую единицу сопротивления.


    Ваша оценка произведения:

Популярные книги за неделю