355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Молчанов » В поисках общей теории роста человечества » Текст книги (страница 4)
В поисках общей теории роста человечества
  • Текст добавлен: 2 июня 2020, 02:30

Текст книги "В поисках общей теории роста человечества"


Автор книги: Анатолий Молчанов



сообщить о нарушении

Текущая страница: 4 (всего у книги 6 страниц)

Кроме того, точно такое же «обоснование» годится и для такого «сложного, многофакторного процесса развития системы, обладающего, однако, статистической стационарностью…», как, например, рост колонии пчел или термитов.

В своих работах по теоретической демографии С.П. Капица предлагал самые разнообразные объяснения аномальному гиперболическому росту населения мира: от взаимодействия населенных пунктов с характерной численностью в 67 тыс. человек до нелокального информационного взаимодействия между членами человеческой популяции. Ответа на вопрос: в чем истинная причина роста человечества по закону гиперболы? – У него, очевидно, нет.

* * *

Если исходить из предположения о том, что гиперболический рост численности человечества был обусловлен причинным законом с простой преддетерминацией, то в уравнении роста должен присутствовать и линейный член: dN/dt = αN + βN2, что будет обосновано нами чуть позже. Если же такого члена нет и рост изначально предполагается гиперболическим, то мы неизбежно приходим к тем противоречиям, о которых говорили ранее.

Первые гоминиды мало отличались от своих собратьев человекообразных обезьян, живших с ними в одно и то же время и умножавших свою численность по закону Мальтуса. Поэтому логично предположить, что рост численности первых популяций рода Homo был экспоненциальным, хотя и чрезвычайно медленным.

С.П. Капица считает, что рост численности гоминид на первом этапе продолжительностью 2.8 млн лет был линейным. Во что поверить совершенно невозможно, поскольку в таком случае суммарный прирост численности популяций гоминид, предков современного человека, на протяжении 2.8 млн лет предполагается постоянным, не зависящим от их растущей численности.

А на втором этапе длительностью 1.6 млн лет он полагает, что этот рост был уже чисто гиперболическим. Почему С.П. Капица не включает линейный член в свое уравнение? Дело здесь не только в том, что в этом случае может быть нарушено соответствие с демографическими данными, указывающими на гиперболический рост.

Причина в том, что если допустить присутствие такого пусть даже и «сколь угодно малого» члена в уравнении роста, то сразу же придется распрощаться с бессмысленным самоподобием роста, его масштабной инвариантностью, а также с автомодельностью развития – понятиями характерными для физических процессов, которые описываются простыми масштабно-инвариантными законами.

Действительно, решения уравнения dN/dt = αN + βN2, в отличие от решений уравнения dN/dt = βN2, имеют встроенный масштаб времени[59]59
  Так же как решения логистического уравнения, которое отличается только знаком второго члена.


[Закрыть]
.

Тут может быть такое возражение: если членом αN на завершающих этапах роста можно пренебречь, то для этих этапов закон роста можно считать степенным со всеми необходимыми для физикалистской интерпретации гиперболического роста следствиями.

Ответ здесь такой: учитывая, что Мир-система ни в какие времена не была единым информационном полем, а информационная связность человечества на протяжении всей человеческой истории всегда только возрастала, квадратичный член βN2 мог начать оказывать существенное влияние лишь на завершающих этапах роста, т. е. в течение последних двух-трех столетий. (На самом деле, и мы впоследствии это покажем, линейным членом нельзя пренебречь ни на каком этапе роста.)

Кроме того, не следует забывать о циклах эволюции и истории, которые вводятся в рассмотрение С.П. Капицей. Все время эволюции, начиная от момента −1.6 млн лет, делится им на одиннадцать периодов равной (в логарифмическом масштабе) длительности с неолитом посередине.

В течение каждого такого периода, длительность которого в три раза меньше предыдущего, численность также возрастала в три раза. Но такая цикличность возможна лишь при степенном, гиперболическом росте; и если на последних циклах линейным членом может быть и можно как-то пренебречь, то рост до неолита, да и в первые несколько тысячелетий после начала неолита, когда человечество не представляло собой системы ни в каком смысле слова, сделать это, очевидно, нельзя, и рост здесь, если исходить из представления о законе роста как о ПОС между численностью и приростом, должен быть экспоненциальным.

В таком случае ни о какой цикличности роста и демографическом императиве до начала новой эры говорить не приходится. Поэтому уравнение роста с дополнительным линейным членом в правой части С.П. Капице и не подходит, поскольку находится в противоречии с принципом демографического императива и цикличностью исторического развития.

* * *

Обоснование этой цикличности – вот та проблема, которая всегда волновала С.П. Капицу. Границы циклов в первом приближении были размечены еще до него историком И.М. Дьяконовым; проблема здесь в том, почему циклов примерно 10–15 и почему они расположены на шкале исторического времени так, как расположены. В чем глубинная природа цикличности?

Показатель сжатия исторического времени (знаменатель прогрессии сжимающихся исторических циклов) С.П. Капица принимает сначала равным числу Эйлера. Его значение е = 2.718… он почему-то считает наиболее подходящей естественной мерой такого сжатия, хотя число Эйлера – основание натуральных логарифмов – в чистом виде никогда не встречается ни в одном законе естествознания.

Потом он «округляет» его до трех, хотя средний коэффициент ускорения развития мировых цивилизаций согласно, например, исследованиям академика Ю.В. Яковца равен примерно двум. Свою постоянную времени τ = 42–45 лет С.П. Капица не связывает ни с каким глобальным циклическим историческим процессом, хотя она примерно равна продолжительности, вероятно, самого главного экономического и исторического цикла – Кондратьевского цикла.

Последний цикл его периодизации по длительности также примерно равен τ, а длительность всех остальных выражается целым числом τ. Эту константу он называет временем, «…определяемым внутренней предельной способностью системы человечества и человека к развитию». Что это означает – не понимает никто.

Безразмерную константу K (Kapitsa), которая вводится вместе с τ, он определяет как главное число своей теории и в одних своих работах называет эффективным размером группы людей, а в других – аналогом числа Рейнольдса в гидродинамике. Что означают константы τ и K на самом деле – совершенно непонятно.

В девяностые годы прошлого века, когда его «феноменология» еще окончательно не закостенела и казалось, что вот-вот, еще чуть-чуть и все станет ясно, он надеялся, что каким-то чудесным образом, возможно, чисто математически – расширением области определения переменных, либо каким-то иным путем эту загадочную цикличность удастся все-таки обосновать:

«Отмеченную цикличность можно связать с тем, что Рв = К2lnt периодична в комплексной области, или же тем, что мы имеем дело с бифуркациями в более полной системе уравнений, описывающей рост» [1].

Но время шло, а проблема так и оставалась нерешенной. Спустя годы, все, что может предложить автор «Парадоксов роста» – это лишь поверхностную, механистическую аналогию:

«Хорошо известно, что умело закрученный плоский камень, брошенный под малым углом к поверхности пруда способен многократно отскакивать от воды, совершая прыжки на большое расстояние. В этом явлении мы видим, как быстрое вращение камня стабилизирует его в пространстве, несмотря на удары о поверхность воды. С другой стороны, мы видим, как в этих условиях преобразуется движение камня по инерции и образуется устойчивая периодическая серия укорачивающихся скачков, пока движение не затухнет и камень не утонет.

В этой механической модели можно усмотреть поучительные аналогии с предложенной моделью развития населения Земли, когда внутренние процессы приводят к возникновению периодических циклов, которые определяют развитие и устойчивость этого процесса. Поэтому подобные примеры, взятые из механики, помогают понять развитие такой сложной системы, как человечество, в результате которого население Земли в среднем устойчиво следует по статистически детерминированному пути автомодельного, самоподобного роста, управляемого внутренней динамикой роста, сцепленного с развитием благодаря разуму» [9].

Не находит объяснения эта цикличность и в последней попытке построить модель роста численности населения Земли с учетом пространственного распределения (авторы: В.А. Князева, Е.Н. Белавин, Е.С. Куркина)[60]60
  http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf


[Закрыть]
.

Рост численности человечества с учетом пространственного распределения безо всякого обоснования и каких-либо объяснений описывается ими с помощью уравнения диффузии или горения, которое, по их мнению, может описывать и мировой демографический процесс. Путем подгонки по нескольким параметрам они получают необходимое для феноменологической теории Капицы число исторических циклов (11).

Однако такая прямая подгонка ad hoc не устраивает даже С.П. Капицу, наиболее заинтересованного в данной работе: «Это неубедительно ведь, то, что нужно просто задается??» Заметим, что Князева, Белавин и Куркина получили за это свое псевдонаучное «исследование» хорошие деньги: на него был выделен грант, вероятно, не без помощи С.П. Капицы.

В последней своей работе «Парадоксы роста…» С.П. Капица «пришел к выводу», что показатель сжатия исторического времени должен быть равен двум (стр. 182). Т. к. за момент начала неолита у него взята дата 9 тыс. лет до н. э., т. е. мало отличается от той, что принята в нашей модели, то не только количество циклов, которых должно быть 15, а не 11, но и разметка исторического времени на эти циклы у него должна быть примерно такой же, как у нас.

На самом деле для коэффициента сжатия исторического времени он получил величину e/(e-1) = 0.583 (1/0.583 = 1.7), которую странным образом округлил до 0.5, что соответствует показателю сжатия, равному двум. При этом автор «Парадоксов роста» не счел нужным упомянуть ни работу Ю.В. Яковца 1997 года, в которой этот показатель равен 1.8, что ближе к двойке, чем у него, ни нашу работу 2006 года, в которой он в точности равен двум.

* * *

Во всех работах С.П. Капицы по теоретической демографии можно найти графики линейного, экспоненциального и гиперболического роста как возможные варианты роста численности человечества:


Рис. 3. Графики линейного, экспоненциального и гиперболического роста в работах С.П. Капицы.

Уравнения роста как причинные законы здесь схожи, но только при гиперболическом росте численность популяции устремляется к бесконечности за конечный промежуток времени, что приводит, по его мнению, к режиму с обострением, выход из которого С.П. Капица, используя терминологию термодинамики, называет фазовым переходом. В этом, считает С.П. Капица, и состоит главный секрет гиперболического роста со всеми необходимыми для его «феноменологии» физикалистскими следствиями.

Представляется совершенно недопустимым ставить в один ряд столь разные для экологии популяций законы роста, один из которых распространен повсеместно, тогда как другие два как причинные законы роста популяций – НИКОГДА не встречаются в природе.

Линейный закон, как мы уже отмечали ранее, дает постоянный, не зависящий от растущей численности прирост, что выглядит как полная несообразность. Гиперболический рост населения Земли, происходящий по причине ПОС второго порядка между численностью и мировым естественным приростом также невозможен, т. к. предполагает для рассредоточенной популяции Homo sapiens системность, которой она никогда не обладала и еще по множеству других причин, о которых мы будем говорить далее.

Экология популяций – это не физика, у нее свои законы и главный из них – закон экспоненциального роста, который, по мнению физика (!), лауреата нобелевской премии В.Л. Гинсбурга, является первым и важнейшим законом (или даже принципом) экологии популяций.

И который утверждает, что естественное состояние популяции – это рост или уменьшение по экспоненте. Это столь же важный закон для экологии популяций, как первый закон Ньютона для физики. Ни одна популяция, принадлежащая какому-либо виду из всех когда-либо существовавших в природе, не росла в соответствии со степенным причинным законом, связывающим скорость роста с численностью.

Причина здесь в особенностях нелинейного степенного роста, которые не соответствуют никакому природному репродуктивному процессу. Следовательно, причинная модель степенного роста неприменима для описания динамики изменения численности популяций.

И если численность какой-то популяции, как, например, численность человечества все-таки растет по степенному закону, то такое возможно лишь потому, что закон, связывающий скорость роста с численностью, причинным законом в этом случае не является.

Главный закон роста численности изолированной популяции

В основе любых моделей лежат некоторые предположения. Ценность модели определяется тем, насколько ее характеристики соответствуют свойствам моделируемого объекта. Одним из самых фундаментальных предположений, лежащим в основе всех моделей роста, является предположение о пропорциональности скорости роста численности популяции – самой этой численности, будь то популяция зайцев, будь то популяция клеток.

В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей – это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления.

Для сложно организованных растений и животных размножение происходит по более сложному закону, но в наиболее простых и адекватных моделях предполагается, что скорость размножения популяции пропорциональна численности этой популяции. Закон экспоненциального роста справедлив на определенной стадии для следующих живых систем: клеток в ткани, водорослей, бактерий в культуре, животных в популяциях.

Математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто – само, катализ – изменение скорости реакции). Во многих популярных руководствах по экологии говорится, что экспоненциальный рост популяций возможен только в особо оптимальных условиях при отсутствии каких-либо ограничивающих факторов.

Это не совсем верно, поскольку единственное необходимое и достаточное условие такого роста – это постоянство коэффициента естественного прироста, определяющего для размножающихся организмов скорость их размножения.

Так, например, проводя серию наблюдений за ростом популяции каких-либо одноклеточных организмов в разных температурных условиях, нетрудно заметить, что с уменьшением температуры скорость деления клеток падает, но экспоненциальный характер роста сохраняется [13].

Иногда желая принизить значение экспоненциального роста популяции, авторы акцентируют внимание на его непродолжительности, на то, что он почти никогда не встречается в природе и, следовательно, может рассматриваться, по их мнению, лишь как демонстрация потенциальной возможности популяции к росту.

При этом они забывают о том, что никакая популяция так бы никогда и не появилась в природе, если бы не существовал этот важный, пусть и кратковременный, этап ее развития. Но бывают случаи, когда этот этап все длится и длится и никак не может закончиться:

«В 1859 году один фермер завез в южную часть Австралийского континента дюжину кроликов из Европы. В Австралии для них не оказалось видов-контролеров (хищников или паразитов) и численность кроликов стала расти в соответствии с экспоненциальной кривой. В итоге за 6 лет их количество достигло 22 миллионов.

К 1930 году они расселились по всему континенту, а численность их достигла 750 млн! Кролики конкурировали с овцами за корм (в итоге поголовье овец снизилось в два раза). Они лишали корма кенгуру. В начале 1950 годов удалось уничтожить 90 % кроликов, заразив их патогенным вирусом миксомы (родственником вируса оспы). Однако на этом «кроличья эпопея» в Австралии не завершилась: достаточно быстро произошел процесс формирования экотипа устойчивого к болезни, и поголовье снова начало расти» [14].

В природе, прошедшей длительный путь эволюции, мы наблюдаем самые разнообразные способы ограничения экспоненциальной экспансии размножающихся организмов. Важное значение имеют внешние воздействия на популяцию: неблагоприятные условия, конкуренты, хищники, паразиты, возбудители болезней и т. п. Но для изолированных популяций интерес представляют только те изменения, которые возникают внутри самих популяций, происходящие в ответ на рост их численности.

* * *

Распространенное представление о том, что рост популяций в благоприятных условиях ограничивается только объемом пищевых ресурсов и конкуренцией – представляется ошибочным.

Существует множество примеров, свидетельствующих о том, что все популяции: животные, растительные, бактериальные – обладают эффективными средствами, ограничивающими рост своей численности и активизирующимися задолго до того как заканчиваются пищевые ресурсы, или вступают в силу ограничения по причине конкуренции. Есть лишь редкие исключения из этого правила.

Такая саморегуляция, когда популяция ведет себя как единый живой организм, не является приобретением высших форм жизни. Она характерна для всех видов, даже бактериальных, вырабатывающих для этого целое семейство активных веществ.

Высшие организмы регулируют свою численность множеством способов, например, через паразитов в составе биоценоза, пропуском сезонов размножения или даже рассасыванием беременности [15].

Кажутся ли удивительными в таком случае парадоксальный гиперболический рост численности населения Земли и следующий за ним демографический переход, ограничивающий эту численность на некотором предельном уровне.

Рост, который никогда не зависел ни от каких ресурсов и переход, который происходит в условиях всеобщего изобилия, когда нет (в первом приближении) никаких ограничений ни в пищевых, ни в пространственных, ни в энергетических, ни в каких-либо других ресурсах.

Разве удивительно, что растущее человечество как система с помощью разнообразных появляющихся и исчезающих связей управляет своим ростом и ведет себя подобно всем другим видам и подобно Гее Лавлока, как единый живой организм?

* * *

То, что плотность популяции влияет на рост ее численности можно проверить в опытах с любыми видами организмов. Так, например, при содержании белых мышей в вольерах, когда люди следят за чистотой клеток и обеспечивают всех кормом, мыши, достигнув определенной численности, перестают размножаться.

Если перевести их в более просторную клетку, тем самым снизив число особей на квадратный метр, они продолжат размножение вновь до определенного предела. При этом меняются характер поведения мышей и отношения их между собой. Зверьки становятся беспокойными и агрессивными, и это отрицательно влияет на процесс размножения [11].

Когда взаимодействие между членами изолированной популяции отсутствует, ее рост происходит по экспоненциальному закону. Этот закон был описан в книге Роберта Мальтуса «Опыт о законе народонаселения».

В ней впервые было сформулировано положение о том, что численность популяции в благоприятных условиях растет по закону геометрической прогрессии. Сам русский термин «популяция» происходит от английского «population» – население. Мальтус был первым, кто применил математику в экологии, если не считать итальянского математика Фибоначчи.

В своей работе Мальтус четко сформулировал необходимые идеализации, без которых стала бы невозможной математическая постановка задачи: однородность и изолированность популяции, неограниченность ресурсов, постоянство коэффициентов рождаемости и смертности, отсутствие взаимодействия, способного нелинейно сказаться на приросте.

Закон Мальтуса считается первым и самым важным законом экологии популяций. Законы экологии популяций, по мнению В.Л. Гинсбурга, напоминают законы физики:

«Закон Мальтуса описывает, как растут или уменьшаются популяции, когда больше ничего не происходит. Он описывает естественное состояние популяций: как они ведут себя в отсутствие каких-либо внешних факторов (Гинзбург, Коливан 2004)». «…»

«Гинзбург (1986) заметил, что закон Мальтуса играет такую же роль в экологии, как Первый закон Ньютона в физике. До Галилея и Ньютона Аристотель утверждал, что естественным состоянием тел является покой, а движение возникает только тогда, когда к объекту приложена сила.

Господин Исаак Ньютон, однако, доказал, что верно обратное: постоянное движение является естественным состоянием, а непостоянное движение и покой возникают только тогда, когда к объекту приложена сила. Его первый закон содержит концепцию инерции, которая является «стремлением тела сопротивляться изменениям своей скорости» (Кребс 2001). Подобно первому закону Ньютона, закон Мальтуса говорит о том, что естественное состояние популяции – не покой (т. е. постоянная популяция), а движение (т. е. экспоненциальный рост или уменьшение).

И если популяции не растут или уменьшаются экспоненциально, это происходит потому, что внешняя сила (т. е. что-то в окружающей среде) изменяет уровень рождаемости и/или смертности (Гинзбург 1986, Гинзбург, Коливан 2004). Эта внешняя сила может быть как небиотическим, так и биотическим фактором как, например, «уровень межвидового заполнения» и плотность всех остальных видов в сообществе, которые могли бы взаимодействовать с основными видами (Турчин 2003)» [13].

Дадим определение экспоненциальному росту сначала для колонии микроорганизмов, где смертность отсутствует, а затем и для произвольной популяции организмов:

Экспоненциальный, естественный, обусловленный только внутренними, эндогенными, системными причинами, т. е. никак не «извне», не «изнутри» не управляемый рост численности популяции однородных размножающихся организмов – это суперпозиция множества параллельных процессов деления, размножения с постоянным коэффициентом естественного прироста по закону одной и той же прогрессии на последовательности временных интервалов постоянной длительности, равной характерному времени размножения с равномерно распределенной фазой.

Размножающуюся популяцию можно представить как объединение элементарных, независимых, далее неделимых частиц, подсистем, состоящих, к примеру, из одной бактерии или пары разнополых представителей моногамной популяции. Т. е. эта частица, атом популяции, ее элементарная составляющая – «не видит», «не чувствует» других, размножается и гибнет независимо от них по закону геометрической прогрессии, одинаковому для всех.

В более сложном случае можно допустить взаимодействие такой элементарной подсистемы с другими, но лишь такое, которое оставляет неизменным коэффициент естественного прироста вне зависимости от находящегося в системе числа «частиц». Итак, главные условия экспоненциального роста численности популяции это:

1. Неизменность состояния среды (необязательно, чтобы была строгая неизменность, вариации возможны, но лишь в тех пределах, в которых сохраняется гомеостаз организмов), в которой находится популяция, следствием чего является строгая цикличность, периодичность элементарного репродуктивного процесса во времени. Для экспоненциального роста колонии микроорганизмов, к примеру, необходима неизменность концентрации питательной смеси, ее температуры, физических полей, в которых находятся организмы, уровня радиации и т. д.

2. Независимость, отсутствие взаимовлияния процессов размножения элементарных составляющих популяции, рассредоточенной в пределах среды обитания, результатом чего является аддитивность естественного прироста (скорости роста численности) любых ее подсистем. Колонию микробов, например, можно разбить на любые части, в которых будет разное число таких микробов, и скорость роста численности этой колонии будет равна сумме скоростей роста всех ее частей. Это свойство вытекает из линейности дифференциального уравнения (1).

3. Коэффициент естественного прироста популяции α, т. е. прирост ее численности за какой-то малый фиксированный промежуток времени, отнесенный к этой численности, есть величина неизменная или «почти» неизменная в период роста численности.


Рис 1. Главное условие экспоненциального роста популяции заключается в постоянстве коэффициента естественного прироста.

Для популяции организмов со смертностью он равен разности между числом родившихся и числом умерших за единицу времени (Р – С), поделенную на общую численность. И число родившихся, и число умерших – случайные величины, различные по своей природе, имеющие разные математические ожидания и дисперсии и по разному меняющиеся во времени.

Коэффициент рождаемости (P/NΔt) и коэффициент смертности (C/NΔt) могут изменяться со временем в процессе роста популяции, но если при этом их разность будет оставаться неизменной – рост будет экспоненциальным.

Если же это условие будет нарушено – экспоненты не получится; например, если для некоторой популяции коэффициент рождаемости – константа и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим.


    Ваша оценка произведения:

Популярные книги за неделю