Текст книги "Экология: конспект лекций"
Автор книги: Анатолий Горелов
Жанр:
Биология
сообщить о нарушении
Текущая страница: 1 (всего у книги 17 страниц) [доступный отрывок для чтения: 7 страниц]
А. А. Горелов
Экология: конспект лекций
Предисловие
Слово «экология» стало сейчас широко известным и общеупотребительным. В начале ХХ века его знали только ученые-биологи. Во второй половине XX века, когда разразился глобальный кризис, возникло экологическое движение, принимавшее все более широкий размах. Предмет «экология» стал вводиться в среднюю и высшую школу для студентов естественников и гуманитариев. На рубеже III тысячелетия это понятие достигло высшего политического уровня, и экологический императив стал влиять на развитие материального производства и духовной культуры.
В настоящее время предмет «экология» читается студентам разных специальностей с учетом специфики их будущей профессии. Готовя данное учебное пособие к печати, автор старался учесть различные особенности преподавания данного предмета и в то же время не потерять целостности его понимания.
Тема 1. СТРОЕНИЕ ЭКОСИСТЕМ
1.1. Основные понятия экологии
В буквальном смысле слово «экология» означает «наука о доме» (от греч. «ойкос» – жилище, местообитание). Термин «экология» предложил немецкий зоолог Э. Геккель в XIX веке, но как наука экология возникла в начале ХХ века, а в широкий обиход это слово вошло в 60-х годах, когда стали говорить об экологическом кризисе как кризисе во взаимоотношениях человека со средой его обитания.
Как часть биологического цикла, экология – наука о местообитании живых существ, их взаимоотношении с окружающей средой. Экология изучает организацию и функционирование надорганизменных систем различных уровней, вплоть до глобального, т. е. до биосферы в целом.
Предмет экологии разделяется тремя способами. Во-первых, выделяют аутэкологию, которая исследует взаимодействие отдельных организмов и видов со средой, и синэкологию, которая изучает сообщество. Во-вторых, разделение идет по типам сред, или местообитаний, – экология пресных вод, моря, суши, океана. В-третьих, экология разделяется на таксономические ветви – экологию растений, экологию насекомых, экологию позвоночных и т. д., вплоть до экологии человека. Рассматриваются также различные области практического приложения экологии – природные ресурсы, загрязнение среды и т. п.
Основные понятия экологии: популяция, сообщество, местообитание, экологическая ниша, экосистема. Популяцией (от лат. populus– народ) называется группа организмов, относящихся к одному виду и занимающих определенную область, называемую ареалом. Сообществом, или биоценозом, называют совокупность растений и животных, населяющих участок среды обитания. Совокупность условий, необходимых для существования популяций, носит название экологической ниши. Экологическая ниша определяет положение вида в цепях питания.
Совокупность сообщества и среды носит название экологической системы, или биогеоценоза (различия между этими понятиями для нас пока несущественны). Ю. Одум дает такое определение: «Любое единство, включающее все организмы (т. е. „сообщество“) на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создает четко определенную трофическую структуру, видовое разнообразие и круговорот веществ (т. е. обмен веществами между биотической и абиотической частями) внутри системы, представляет собой экологическую систему, или экосистему» (Ю. Одум. Основы экологии. М., 1975, с. 16).
Термин «экосистема» был введен английским экологом А. Тэнсли в 1935 году. В 1944 году В. Н. Сукачевым предложен термин «биогеоценоз», а В. И. Вернадский использовал понятие «биокосное тело». Главное значение этих понятий состоит в том, что они подчеркивают обязательное наличие взаимоотношений, взаимозависимости и причинно-следственных связей, иначе говоря, объединение компонентов в функциональное целое. В качестве примера экосистемы можно привести озеро, лес и т. п. Экосистемы очень различны. Всю биосферу можно рассматривать как совокупность экосистем от голубого океана, в котором преобладают мелкие организмы, но плотность биомассы велика, до высокого леса с крупными деревьями, но меньшей общей плотностью биомассы.
Выделяют два подхода к изучению экологической системы: аналитический, когда изучают отдельные части системы, и синтетический, рассматривающий всю систему в целом. Оба подхода дополняют друг друга. В зависимости от характера питания в экосистеме строится пирамида питания, состоящая из нескольких трофических (от греч. «трофе» – питание) уровней. Низший занимают автотрофные (буквально: самостоятельно питающиеся) организмы, для которых характерны фиксация световой энергии и использование простых неорганических соединений для синтеза сложных органических веществ. К этому уровню относятся прежде всего растения. На более высоком уровне располагаются гетеротрофные (буквально: питающиеся другими) организмы, использующие в пищу биомассу растений, для которых характерны утилизация, перестройка и разложение сложных веществ. Затем идут гетеротрофы второго порядка, питающиеся гетеротрофами первого порядка, т. е. животными. Экологическая пирамида, или пирамида питания, хорошо запоминается со школьных уроков биологии.
В целом в составе экосистемы выделяют три неживых и три живых компонента: 1) неорганические вещества (азот, углекислый газ, вода и др.), включающиеся в природные кругообороты; 2) органические соединения (белки, углеводы и т. д.); 3) климатический режим (температура, свет, влажность и другие физические факторы); 4) продуценты (автотрофные организмы, главным образом зеленые растения, которые создают пищу из простых неорганических веществ); 5) макроконсументы – гетеротрофные организмы, главным образом животные, которые поедают другие организмы; 6) микроконсументы, или редуценты, – гетеротрофные организмы, преимущественно бактерии и грибы, «которые разрушают сложные соединения мертвой протоплазмы, поглощают некоторые продукты разложения и высвобождают неорганические питательные вещества, пригодные для использования продуцентами, а также органические вещества, способные служить источниками энергии, ингибиторами или стимуляторами для других биотических компонентов экосистемы» (Там же).
Взаимодействие автотрофных и гетеротрофных компонентов – один из самых общих признаков экосистемы, хотя часто эти организмы разделены в пространстве, располагаясь в виде ярусов: автотрофный метаболизм наиболее интенсивно протекает в верхнем ярусе – «зеленом поясе», где наиболее доступна световая энергия, а гетеротрофный метаболизм преобладает внизу, в почвах и отложениях, – «коричневом поясе», в котором накапливается органическое вещество.
Пирамида питания определяет круговорот веществ в биосфере, который выглядит следующим образом:
Экология показала, что живой мир – не простая совокупность существ, а единая система, сцементированная множеством цепочек питания и иных взаимодействий. Каждый организм может существовать только при условии постоянной тесной связи со средой. Интенсивность метаболизма в экосистеме и его относительная стабильность определяются в значительной мере потоком солнечной энергии и перемещением химических веществ.
Отдельные организмы не только приспособлены к физической среде, но и своим совместным действием в рамках экосистемы приспосабливают геохимическую среду к своим биологическим потребностям. Из простых веществ, содержащихся в море, в результате деятельности животных (кораллов и др.) и растений построены целые острова. Состав атмосферы также регулируется организмами.
В создании кислорода атмосферы и органических веществ главную роль играет фотосинтез, который протекает по такой схеме:
углекислый газ + вода + солнечная энергия (в присутствии ферментов, связанных с хлорофиллом) = глюкоза + кислород.
Этот процесс преобразования части солнечной энергии в органическое вещество путем фотосинтеза называют «работой зеленых растений». Таким образом производятся не только углеводы (глюкоза), но и аминокислоты, белки и другие жизненно важные соединения.
Эволюцию форм жизни обеспечило то, что в течение большей части геологического времени часть продуцируемого органического вещества не разлагалась, и преобладание органического синтеза вело к увеличению концентрации кислорода в атмосфере. Около 300 млн лет тому назад отмечался особенно большой избыток органической продукции, что способствовало образованию ископаемых горючих веществ, за счет которых человек совершил промышленную революцию.
Три функции сообщества в целом – продукция, потребление и разложение – тесно связаны друг с другом. Хотя мы считаем микроорганизмы «примитивными», человек не может существовать без микробов. «Разложение, следовательно, происходит благодаря энергетическим превращениям в организме и между ними. Этот процесс абсолютно необходим для жизни, так как без него все питательные вещества оказались бы связанными в мертвых телах и никакая новая жизнь не могла бы возникать... Однако гетеротрофное население биосферы состоит из большого числа видов, которые, действуя совместно, производят полное разложение» (Там же, с. 41). Наиболее устойчивым продуктом разложения является гумус, необходимый почве для роста растений.
Сбалансированность продуцирования и разложения – основное условие существования всего живого в биосфере. Отставание утилизации вещества, произведенного автотрофами, не только обеспечивает построение биологических структур, но и обусловливает существование кислородной атмосферы. «В настоящее время человек (разумеется неосознанно) начинает ускорять процессы разложения в биосфере, сжигая органическое вещество, запасенное в виде ископаемых горючих веществ (угля, нефти, газа), и интенсифицируя сельскохозяйственную деятельность, которая повышает скорость разложения гумуса» (Там же). В результате увеличивается содержание углекислого газа в атмосфере, который подобно стеклу поглощает инфракрасное излучение, испускаемое земной поверхностью, создавая так называемый парниковый эффект. Люди оказываются как бы в гигантском парнике со всеми вытекающими отсюда последствиями для глобального климата.
«Среднеглобальная температура атмосферы у поверхности Земли около 15 оС. За последний 1 миллион лет она изменялась в пределах 5 оС похолодания и 2 оС потепления. При изменении среднеглобальной температуры на 10 оС, т. е. в 1,5 раза от современного уровня, скорее всего, будет нацело нарушено действие принципа Ле Шателье – Брауна (об этом принципе см. ниже. – А. Г.) – биота как бы сама себя «съест», так как процессы обмена веществ, усиливаясь, приведут не к сопротивлению изменениям в окружающей биоту среде, а к быстрой самодеструкции биосферы» (Н. Ф. Реймерс. Надежды на выживание человечества: концептуальная экология. М., 1992, с. 63). Потенциальные опасности данного процесса – таяние полярных льдов и установление тропического климата на всей Земле.
Все это свидетельствует о том, как важно учитывать тонкие механизмы биосферы – машины, которую надо знать и по крайней мере не мешать ее работе.
Экосистемы подобно организмам и популяциям способны к саморегулированию, противостоя изменениям и сохраняя состояние равновесия. Но для того, чтобы эти механизмы нормально функционировали, необходим период эволюционного приспособления к условиям среды, который называется адаптацией. Адаптация организма может быть структурной, физиологической и поведенческой. К структурной относится изменение окраски, строения тела и т. д. К физиологической относится, скажем, появление слуховой камеры у летучей мыши, позволяющей иметь идеальный слух. Пример поведенческой адаптации демонстрирует мотылек с полосатыми крыльями, садящийся на полосатые листья лилий так, чтобы его полоски были параллельны полоскам на листьях. Аналогичные механизмы адаптации существуют и на уровне экосистем в целом. Они не должны нарушаться человеком, иначе ему придется или самому конструировать их искусственные заменители, на что он пока не способен, или его ждет экологическая катастрофа, так как он не может существовать ни в какой иной среде, кроме биосферы.
1.2. Энергия в экологических системах
Одной из задач экологии является изучение превращения энергии внутри экологической системы. Усваивая солнечную энергию, зеленые растения создают потенциальную энергию, которая при потреблении пищи организмами превращается в другие формы. Превращения энергии в отличие от цикличного движения веществ идут в одном направлении, почему и говорят о потоке энергии.
С точки зрения изучения потоков энергии важны два начала термодинамики. Первое начало гласит, что энергия не может создаваться заново и исчезать, а только переходит из одной формы в другую. Второе начало формулируется таким образом: процессы, связанные с превращениями энергии, могут протекать самопроизвольно лишь при условии, что энергия переходит из концентрированной формы в рассеянную. То, что согласно второму началу энергия при любых превращениях стремится перейти в тепло, равномерно распределенное между телами, дало основания говорить о «старении» Солнечной системы. Характерна ли эта тенденция к энергетическому выравниванию для всей Вселенной, пока не ясно, хотя в XIX веке широко обсуждался вопрос о «тепловой смерти Вселенной».
Общепринятая в физике формулировка второго начала гласит, что в закрытых системах энергия стремится распределиться равномерно, т. е. система стремится к состоянию максимальной энтропии. Отличительной же особенностью живых тел, экосистем и биосферы в целом является способность создавать и поддерживать высокую степень внутренней упорядоченности, т. е. состояния с низкой энтропией.
По определению Э. Шредингера, «жизнь – это упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время... средство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды. В самом деле, у высших животных мы достаточно хорошо знаем тот вид упорядоченности, которым они питаются, а именно: крайне хорошо упорядоченное состояние материи в более или менее сложных органических соединениях служит им пищей. После использования животные возвращают эти вещества в деградированной форме, однако не вполне деградированной, так как их еще могут употреблять растения. Для растений мощным источником „отрицательной энтропии“, конечно, является солнечный свет» (Э. Шредингер. Что такое жизнь? С точки зрения физика. М., 1972, с. 71, 76).
Свойство живых систем извлекать упорядоченность из окружающей среды дало основания некоторым ученым, в частности Э. Бауэру, сделать вывод, что для этих систем второе начало не выполняется. Но второе начало имеет еще и другую, более общую формулировку, справедливую для открытых, в том числе живых, систем. Она гласит, что эффективность самопроизвольного превращения энергии всегда меньше 100 %. В соответствии со вторым началом поддержание жизни на Земле без притока солнечной энергии невозможно. «Все, что происходит в природе, означает увеличение энтропии в той части Вселенной, где это имеет место. Так и живой организм непрерывно увеличивает свою энтропию, или, иначе, производит положительную энтропию, и, таким образом, приближается к опасному состоянию – максимальной энтропии, – представляющему собой смерть. Он может избежать этого состояния, т. е. оставаться живым, только постоянно извлекая из окружающей среды отрицательную энтропию» (Там же, с. 76).
В экосистемах перенос энергии пищи от ее источника – растений через ряд организмов, происходящий путем поедания одних организмов другими, и называется пищевой цепью. При каждом очередном переносе большая часть (80–90 %) потенциальной энергии теряется, переходя в тепло.
Это ограничивает возможное число звеньев цепи до четырех-пяти. Зеленые растения занимают первый трофический уровень, травоядные – второй, хищники – третий и т. д. Переход к каждому следующему звену уменьшает доступную энергию примерно в 10 раз. Переходя к человеку, можно сказать, что если увеличивается относительное содержание мяса в рационе, то уменьшается число людей, которых можно прокормить.
Экологическая пирамида, представляющая собой трофическую структуру, основанием которой служит уровень продуцентов, а последующие уровни образуют ее этажи и вершину, может быть трех основных типов: «1) пирамида чисел, отражающая численность отдельных организмов; 2) пирамида биомассы, характеризующая общий сухой вес, калорийность или другую меру общего количества живого вещества; 3) пирамида энергии, показывающая величину потока энергии и (или) „продуктивность“ на последовательных трофических уровнях» (Ю. Одум. Основы... с. 105). Энергетическая пирамида всегда сужается кверху, поскольку энергия теряется на каждом последующем уровне.
Важнейшей характеристикой экосистемы является ее продуктивность, под которой понимается как рост организмов, так и создание органического вещества. Поглощается лишь около половины всей лучистой энергии (в основном в видимой части спектра), и самое большое около 5 % ее в самых благоприятных условиях превращается в продукт фотосинтеза. Значительная часть (не менее 20 %, а обычно около 50 %) этой потенциальной пищи (чистой продукции) человека и животных расходуется на дыхание растений. Содержание хлорофилла на 1 м2в разных сообществах примерно одинаково, т. е. в целых сообществах содержание зеленого пигмента распределено более равномерно, чем в отдельных растениях или их частях.
Соотношение между зелеными и желтыми пигментами можно использовать как показатель отношения гетеротрофного метаболизма к автотрофному. Когда в сообществе фотосинтез превышает дыхание, доминируют зеленые пигменты, а при усилении дыхания сообщества увеличивается содержание желтых пигментов.
Среди произведенной в процессе фотосинтеза продукции выделяют первичную продуктивность, которая определяется как скорость, с которой лучистая энергия усваивается организмами-продуцентами, главным образом зелеными растениями. Ее разделяют на валовую первичную продукцию, включая ту органику, которая была израсходована на дыхание, и чистую первичную продукцию – за вычетом использованной при дыхании растений. Чистая продуктивность сообщества – скорость накопления органического вещества, не потребленного гетеротрофами. Наконец, скорость накопления энергии на уровне консументов называют вторичной продуктивностью. В соответствии со вторым началом поток энергии с каждой ступенью уменьшается, так как при превращениях одной формы энергии в другую часть энергии теряется в виде тепла. «В более плодородных прибрежных водах первичная продукция приурочена к верхнему слою воды толщиной около 30 м, а в более чистых, но бедных водах открытого моря зона первичной продукции может простираться вниз на 100 м и ниже. Вот почему прибрежные воды кажутся темно-зелеными, а океанские – синими» (Там же, с. 70).
Часть энергии, идущая на дыхание, т. е. на поддержание структуры, велика в популяциях крупных организмов и в зрелых сообществах. Эффективность природных систем много ниже КПД электромоторов и других двигателей. В живых системах много «горючего» уходит на «ремонт», что не учитывается при расчете КПД двигателей. Любое повышение эффективности биологических систем оборачивается увеличением затрат на их поддержание. Экологическая система – это машина, из которой нельзя «выжать» больше, чем она способна дать. Всегда наступает предел, после которого выигрыш от роста эффективности сводится на нет ростом расходов и риском разрушения системы.
Человек не должен стремиться получать более одной трети валовой (или половины чистой) продукции, если он не готов поставлять энергию для замены тех «механизмов самообслуживания», которые развились в природе, чтобы обеспечить долговременное поддержание первичной продукции в биосфере. Прямое удаление человеком или домашними животными более 30–50 % годового прироста растительности может уменьшить способность экосистемы сопротивляться стрессу.
Один из пределов биосферы – валовая продукция фотосинтеза, и под него человеку придется подгонять свои нужды, пока не удастся доказать, что усвоение энергии путем фотосинтеза можно сильно повысить, не подвергая при этом опасности нарушить равновесие других, более важных ресурсов жизненного круговорота.
Урожай, получаемый человеком, составляет 1 % чистой или 0,5 % общей первичной продукции биосферы, если учитывать только потребление пищи человеком. Вместе с домашними животными это 6 % чистой продукции биосферы или 12 % чистой продукции суши.
Энергия, которую расходует человек, чтобы получить больший урожай, называется добавочной энергией. Она необходима для индустриализованного сельского хозяйства, так как этого требуют культуры, созданные специально для него. «Индустриализованное (использующее энергию горючих ископаемых) сельское хозяйство (как, например, практикуемое в Японии) может дать в 4 раза более высокий урожай с гектара, чем сельское хозяйство, в котором всю работу выполняют люди и домашние животные (как в Индии), но оно требует в 10 раз больших затрат разного рода ресурсов и энергии» (Там же, с. 526). Так называемые энергетические «субсидии» соответствуют закону убывающей отдачи А. Тюрго – Т. Мальтуса, формулируемому следующим образом: «Повышение удельного вложения энергии в агросистему не дает адекватного пропорционального увеличения ее продуктивности (урожайности)».
Замкнутость производственных циклов по энергетически-энтропийному параметру теоретически невозможна, поскольку течение энергетических процессов (в соответствии со вторым началом термодинамики) сопровождается деградацией энергии и повышением энтропии природной среды. Действие второго начала термодинамики выражается в том, что превращения энергии идут в одном направлении в отличие от цикличного движения веществ.
В формулировке Ю. Одума второе начало термодинамики справедливо по крайней мере для современного состояния системы «человек – природная среда», поскольку существование этой системы полностью зависит от притока солнечной энергии. Мы являемся свидетелями того, что повышение уровня организации и разнообразия культурной системы уменьшает ее энтропию, но увеличивает энтропию окружающей природной среды, вызывая ее деградацию. В какой степени можно элиминировать эти следствия второго начала? Существуют два пути. Первый заключается в уменьшении потерь используемой человеком энергии при ее различных превращениях. Этот путь эффективен в той мере, в которой не приводит к понижению стабильности систем, через которые идет поток энергии (как известно, в экологических системах увеличение числа трофических уровней способствует повышению их устойчивости, но в то же время росту потерь энергии, проходящей через систему). Второй путь заключается в переходе от повышения упорядоченности культурной системы к повышению упорядоченности всей биосферы. Общество в этом случае повышает организованность природной среды за счет понижения организованности той части природы, которая находится за пределами биосферы Земли.