355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алена Титаренко » Шпаргалка по органической химии » Текст книги (страница 2)
Шпаргалка по органической химии
  • Текст добавлен: 12 октября 2016, 04:52

Текст книги "Шпаргалка по органической химии"


Автор книги: Алена Титаренко


Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 2 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]

9. Предельные углеводороды (алканы). Номенклатура алканов и их производных

Углеводороды – это простейшие органические соединения, которые состоят из двух элементов – углерода, водорода.

Предельные углеводороды, или алканы.

(международное название), – это соединения, состав которых выражается общей формулой СnН2n+2, где n – число атомов углерода.

Особенности предельных углеводородов (алканов):

1) в молекулах предельных углеводородов атомы углерода связаны между собой простой (одинарной) связью;

2) остальные валентности насыщены атомами водорода;

3) алканы также называются насыщенными углеводородами, или парафинами;

4) первым членом гомологического ряда алканов является метан (СН4);

5) начиная с пятого углеводорода название образуется от греческого числительного, которое указывает число углеродных атомов в молекуле;

6) в гомологическом ряду наблюдается изменение физических свойств углеводородов: а) повышаются температуры кипения и плавления; б) возрастает плотность;

7) алканы начиная с четвертого члена ряда (бутана) имеют изомеры.

Номенклатура алканов и их производных.

При отрыве атома водорода от молекулы алкана образуются одновалентные частицы, которые называются углеводородными радикалами.

Радикалы образуются не только органическими, но и неорганическими соединениями.

Если отнять от молекулы углеводорода два атома водорода, получаются двухвалентные радикалы.

Для названия изомеров применяются две номенклатуры: 1) рациональная – старая; 2) заместительная (систематическая или международная) – современная. Предложена Международным союзом теоретической и прикладной химии ИЮПАК.

Особенности рациональной номенклатуры: 1) по рациональной номенклатуре углеводороды рассматриваются как производные метана, у которого один или несколько атомов водорода замещены на радикалы; 2) рациональная номенклатура удобна для не очень сложных соединений.

Особенности заместительной номенклатуры: 1) по заместительной номенклатуре основой для названия служит одна углеродная цепь, а все другие фрагменты молекулы рассматриваются как заместители; 2) если в формуле содержится несколько одинаковых радикалов, то перед их названием указывается число прописью, а номера радикалов разделяются запятыми.

Химия – это наука о качественных изменениях тел, происходящих под влиянием изменения количественного состава (Ф. Энгельс).

Явление изомерии в ряду углеводородов – это изомерия углеродного скелета молекул, который обусловливает возможность существования разных веществ одного и того же состава.

10. Химические свойства метана и его гомологов

Принадлежность веществ к группе предельных углеводородов определяется характером строения.

Основные свойства метана:

1) это газ без цвета и запаха (СН4);

2) в два раза легче воздуха;

3) образуется в природе в результате разложения без доступа воздуха остатков животных и растительных организмов;

4) может быть обнаружен в заболоченных водоемах, каменноугольных шахтах;

5) содержится в природном газе, который широко используется в качестве топлива в быту и на производстве;

6) в молекуле метана химические связи атомов водорода с атомом углерода имеют ковалентный характер.

Молекула метана имеет тетраэдрическую форму, а не плоскую.

Когда атом углерода вступает во взаимодействие с атомами водорода, s-электроны наружного слоя в нем распариваются, один из них занимает вакантное место третьего р-электрона и образует при своем движении облако в виде объемной восьмерки, перпендикулярное по отношению к облакам двух других р-электронов.

Атом при этом переходит в возбужденное состояние. Все четыре валентных электрона становятся неспаренными, они могут образовывать четыре химические связи.

Противоречия: 1) три р-электрона должны образовывать три химические связи с атомами водорода во взаимно перпендикулярных направлениях (под углом 90°); 2) четвертый атом водорода мог бы присоединяться в произвольном направлении.

Разрешение противоречий: 1) в процессе образования химических связей облака всех валентных электронов атома углерода (одного s– и трех р-электронов) выравниваются, становятся одинаковыми; 2) облака принимают форму несимметричных, вытянутых в направлении к вершинам тэтраэдра объемных восьмерок. Несимметричное распределение электронной плотности означает, что вероятность нахождения электрона по одну сторону от ядра больше, чем по другую; 3) угол между осями гибридных электронных облаков равен 109°, что позволяет им максимально удаляться друг от друга; 4) такие облака могут значительно перекрываться электронными облаками водородных атомов, что ведет к большому выделению энергии и образованию прочных, одинаковых по свойствам химических связей.

Гибридизация может распространяться на разное число электронных облаков.

Шаростержневая модель молекулы:

1) детали, изображающие атомы, соединяются на некотором расстоянии друг от друга посредством стерженьков, символизирующих валентные связи; 2) модель дает наглядное представление о том, какие атомы с какими соединены, но она не передает относительных размеров и внешней формы молекулы.

11. Строение и номенклатура углеводородов ряда метана

Строение углеводородов.

В природном газе и особенно в нефти содержится много углеводородов, сходных с метаном по строению и свойствам.

Предельные углеводороды (неразветвленного строения): 1) метан; 2) этан; 3) пропан; 4) бутан; 5) пентан; 6) гексан; 7) гептан; 8) октан; 9) нонан; 10) декан.

Для наименования всех предельных углеводородов принят суффикс – ан.

С увеличением молекулярной массы последовательно возрастают температуры плавления и кипения углеводородов.

Первые четыре вещества (С1 – С4) при обычных условиях – газы.

Все предельные углеводороды нерастворимы в воде, но могут растворяться в органических растворителях.

Общая формула углеводородов: СnH2n+2, где n – число атомов углерода в молекуле.

Пространственное и электронное строение молекул пропана и бутана.

Атомы углерода в них расположены не по прямой линии, а зигзагообразно.

Причина – в тетраэдрическом направлении валентных связей атомов углерода.

Если к одному атому углерода присоединился другой атом углерода, то у этого последнего остались три свободные валентности, все они направлены к вершинам тетраэдра. Следующий атом углерода может присоединиться только в одном из этих направлений.

Углеродная цепь неизменно принимает зигзагообразную форму.

Угол между ковалентными связями, соединяющими атомы углерода в такой цепи, как и в молекуле метана, 109° 28′.

Зигзагообразная цепь атомов углерода может принимать различные пространственные формы.

Это связано с тем, что атомы в молекуле могут относительно свободно вращаться вокруг простых сигма-связей.

Углеродная цепь получается сильно изогнутой. Если повернуть атом углерода, то молекула примет почти кольцеобразную форму.

Такое вращение существует в молекулах как проявление теплового движения (если нет препятствующих этому факторов).

Наиболее энергетически выгодной является форма с наибольшим удалением атомов друг от друга.

Все эти разновидности легко переходят одна в другую, при этом их химическое строение (последовательность связи атомов в молекулах) остается неизменным.

Свойство атомов углерода соединяться друг с другом в длинные цепи связано с положением элемента в Периодической системе Д.И. Менделеева и строением его атомов.

При химической реакции у атома углерода трудно полностью оторвать четыре валентных электрона, а также присоединить к нему столько же элетронов от других атомов до образования полного октета.

12. Химические свойства предельных углеводородов

1. Горение углеводородов на воздухе и выделение большого количества теплоты.

Продукты горения подтверждают наличие углерода и водорода в метане. Если поджечь газ, собранный в стеклянном цилиндре, то после прекращения горения стенки внутри цилиндра становятся влажными.

При добавлении в цилиндр известковой воды она становится мутной.

При горении метана образуются вода и оксид углерода (IV).

2. Смесь метана с кислородом или воздухом при поджигании может взрываться.

Наиболее сильный взрыв получается, если смешать метан с кислородом в объемном отношении 1:2. Оптимальное отношение объемов при взрыве метана с воздухом 1:10.

Взрыв меньшей силы может происходить и при некоторых других объемных отношениях газов.

Наиболее опасными являются смеси метана с воздухом в каменноугольных шахтах, заводских котельных, квартирах.

Для обеспечения безопасности работы в шахтах устанавливают автоматические приборы – анализаторы, сигнализирующие о появлении газа.

Горение углеводородов, которые имеют значительную молекулярную массу.

Парафин – это смесь твердых углеводородов.

Если поместить в фарфоровую чашечку кусочек парафина, расплавить и поджечь его, то при горении образуется много копоти.

Когда горят газообразные вещества, они хорошо смешиваются с воздухом и поэтому сгорают полностью.

При горении расплавленного парафина кислорода не хватает для сгорания всего углерода и углерод выделяется в свободном виде.

3. При сильном нагревании углеводороды разлагаются на простые вещества – углерод и водород.

Эти реакции могут служить подтверждением молекулярной формулы вещества: при разложении метана образуется двойной, а при разложении этана – тройной объем водорода по сравнению с объемом исходного газа (объем углерода как твердого вещества в расчет не принимается).

4. Реакция с галогенами (хлором).

Если смесь метана с хлором в закрытом стеклянном цилиндре выставить на рассеянный солнечный свет (при прямом солнечном освещении может произойти взрыв), то произойдет постепенное ослабление желто-зеленой окраски хлора при взаимодействии его с метаном.

Химическая реакция заключается в разрыве одних связей и образовании новых.

Атомы хлора имеют в наружном слое по одному неспаренному электрону, становятся свободными радикалами.

Когда атом-радикал, который обладает высокой химической активностью, сталкивается с молекулой метана, его электрон начинает взаимодействовать с электронным облаком атома водорода. Между этими атомами устанавливается ковалентная связь и образуется молекула хлороводорода.

13. Применение и получение предельных углеводородов

Сферы применения предельных углеводородов:

1) метан в составе природного газа находит все более широкое применение в быту и на производстве;

2) пропан и бутан применяются в виде «сжиженного газа», особенно в тех местностях, где нет подвода природного газа;

3) жидкие углеводороды используются как горючее для двигателей внутреннего сгорания в автомашинах, самолетах;

4) метан как доступный углеводород в большей степени используется в качестве химического сырья;

5) реакция горения и разложения метана используется в производстве сажи, идущей на получение типографской краски и резиновых изделий из каучука;

6) высокая теплота сгорания углеводородов обусловливает использование их в качестве топлива;

7) метан – основной источник получения водорода в промышленности для синтеза аммиака и ряда органических соединений.

Наиболее распространенный способ получения водорода из метана – взаимодействие его с водяным паром.

Реакция хлорирования служит для получения хлорпроизводного метана.

Особенности хлорметана: 1) это газ; 2) это вещество, которое легко переходит в жидкое состояние; 3) это вещество, которое поглощает большое количество теплоты при последующем испарении.

Особенности дихлорметана, трихлорметана и тетрахлорметана: 1) это жидкости; 2) используются как растворители; 3) применяются для тушения огня (особенно когда нельзя использовать воду); 4) тяжелые негорючие газы этих веществ, которые образуются при испарении жидкости, быстро изолируют горящий предмет от кислорода воздуха.

Из гомологов метана при реакции изомеризации получаются углероводороды разветвленного строения.

Они используются в производстве каучуков и высококачественных сортов бензина.

Получение углеводородов: 1) предельные углеводороды в больших количествах содержатся в природном газе и нефти; 2) из природных источников их извлекают для использования в качестве топлива и химического сырья.

Особенности синтеза метана: 1) синтез метана показывает возможность перехода от простых веществ к органическим соединениям. Реакция идет при нагревании углерода с водородом в присутствии порошкообразного никеля в качестве катализатора; 2) синтез метана – реакция экзотермическая. Сильное нагревание не будет повышать выход продукта, равновесие сместится в сторону образования исходных веществ; 3) при слабом нагревании будет недостаточна скорость образования метана; 4) оптимальная температура синтеза метана примерно 500 °C; 5) для разложения метана необходима температура 1000 °C.

14. Алкины (ацетиленовые углеводороды)

Алкины – это углеводороды, в молекулах которых два атома углерода находятся в состоянии sp-гибридизации и связаны друг с другом тройной связью.

Общая формула: CnH2n–2, где n > 2.

Особенности алкинов: 1) длина связи в алкинах равна 0,120 нм; 2) каждый атом углерода в состоянии sp-гибридизации связан с двумя другими атомами; 3) может присоединять еще два атома.

Существует два типа изомерии алкинов: 1) изомерия положения тройной связи; 2) изомерия цепи.

Первые два члена гомологического ряда – этин и пропин – изомеров не имеют.

Для бутинов возможен только один вид изомерии – изомерия положения тройной связи.

Существует два типа номенклатуры: 1) международная номенклатура: этин; пропин; 2) рациональная номенклатура: ацетилен; метиацетилен.

Физические свойства алкинов: 1) С2Н2…С4Н6 – газы; 2) С5Н8…С15Н28 – жидкости; 3) С16Н30… – твердые вещества; 4) плохо растворимы в воде.

Химические свойства алкинов: обладают большой реакционной способностью, характеризуются реакцией присоединения, тройная связь содержит две π-связи.

Реакции присоединения:

1) присоединение водорода (гидрирование). На I ступени образуются алкены, на II ступени – алканы.

2) присоединение галогенов (галогенирование). HC≡CH + HCl → CH2=CHCl → CH3-CHCl2;

На I ступени образуются дигалогеналкены, на II – тетрагалогеналканы.

Реакция алкинов с бромной водой – качественная реакция на алкины. Бромная вода обесцвечивается;

3) присоединение галогеноводородов (гидрогалогенирование).

На I ступени образуются моногалогеналкены, на II – дигалогеналканы;

4) присоединение воды (гидратация).

Ацетилен образует альдегид, его гомологи – кетоны (реакция М.Г. Кучерова):

Реакция окисления: 1) горение (полное окисление): 2С2Н2 + 5O2 → 4СO2 + 2Н2О; 2) неполное окисление (под действием окислителя типа КМnO4, К2Сr2О7).

При действии сильных окислителей (КМnO4 в нейтральной среде, К2Сr2О7 в кислотной среде) алкины окисляются с разрывом молекулы по тройной связи (кроме ацетилена).

Конечным продуктом реакции являются карбоновые кислоты: СН3-С≡С-СН3 + 3[О] + Н2О → 2СН3-СООН – этановая (уксусная) кислота.

При неполном окислении ацетилена образуется двухосновная щавелевая кислота: СН≡Н + 4[О] → НООС-СООН.

15. Непредельные (ненасыщенные) углеводороды

Непредельные углеводороды – это углеводороды, в молекулах которых имеются атомы углерода, которые связаны между собой двойными или тройными связями.

Ненасыщенные углеводороды – это углеводороды, молекулы которых имеют меньшее число атомов водорода, чем насыщенные.

Особенности непредельных углеводородов:

1) первыми представителями гомологических рядов непредельных углеводородов являются этилен (с двойной связью) и ацетилен (с тройной связью);

2) двойная связь состоит из одной δ-связи и одной π-связи;

3) по своей природе π-связь резко отличается от δ-связи. Основные отличия π-связи от δ-связи:

а) π-связь менее прочная при перекрывании электронных облаков вне плоскости молекулы;

б) двойная связь изображается двумя одинаковыми черточками, но при этом учитывается их неравноценность;

4) тройная связь состоит из одной δ-связи и двух π-связей.

Особенность тройной связи ацетилена и его гомологов: из электронного строения видно, что кратные связи (двойные и тройные) сравнительно легко (легче, чем одинарные) разрываются при химическом взаимодействии.

Гомологические ряды непредельных углеводородов и их особенности:

1) соединения гомологического ряда этилена выражаются общей формулой СnН2n;

2) названия гомологов по рациональной номенклатуре производятся от названий соответствующих предельных углеводородов путем замены окончаний (-ан на – илен);

3) по заместительной номенклатуре названия этиленовых углеводородов производятся от названий предельных углеводородов при замене окончаний – ан на – ен (-ен – двойная связь).

Общее международное название этиленовых углеводородов – алкены.

Олефины – это непредельные углеводороды ряда этилена, которые содержат одну двойную связь;

4) гомологический ряд ацетилена выражается формулой СnН2n-2;

5) название ацетиленовых углеводородов по заместительной номенклатуре производятся от названий предельных углеводородов при замене окончаний – ан на – ин.

Алкины – это общее название ацетиленовых углеводородов по заместительной номенклатуре.

Важным источником получения этилена и его гомологов служат газообразные и жидкие продукты крекинга углеводородов нефти.

Крекинг – это процесс расщепления углеводородов с длинными цепями на молекулы меньшей длины.

При крекинге наряду с предельными углеводородами всегда получаются и непредельные, которые образуются при крекинге, а также получаются дегидрированием предельных углеводородов, содержащихся в попутных газах нефтедобычи.

16. Этилен и его гомологи

Особенности строения этилена: 1) это бесцветный газ; 2) немного легче воздуха; 3) почти не имеет запаха; 4) плотность этилена при нормальных условиях – 1,25 г/л; 5) молярная масса газа – 1,25 г/л х 22,4 л/моль = 28 г/моль; 6) относительная молекулярная масса этилена – 28 г/моль; 7) не может иметь более двух атомов водорода; 8) молекулярная формула этилена – С2Н4; 9) в его молекуле атомы углерода соединены с меньшим числом атомов водорода, чем в молекуле этана; 10) атомы соединяются в соответствии с валентностью; 11) молекула этилена симметрична, т. е. каждый атом углерода в ней связан с двумя атомами водорода. Четвертые единицы валентности атомов углерода не могут оставаться свободными, они соединяются друг с другом, образуя вторую связь между атомами углерода; 12) в молекуле этилена устанавливается двойная связь. Каждая валентность атома углерода обусловливается наличием неспаренного электрона в его наружном электронном слое; 13) в молекуле этилена сохраняется четырехвалентность углерода и правило электронного октета для его атомов.

Особенности sр2-гибридизации:

1) гибридные облака принимают одинаковую форму несимметричных, вытянутых в одну сторону объемных восьмерок;

2) при образовании химических связей они расходятся на наибольшее удаление друг от друга – это достигается тогда, когда угол между их осями будет составлять 120°;

3) у атомов углерода остается еще по одному р-электрону.

Облако этого электрона не затронуто гибридизацией, оно не изменило своей формы и также имеет вид объемной восьмерки с равномерным распределением электронной плотности по обе стороны ядра;

4) оси электронных облаков перпендикулярны плоскости атомных ядер и оказываются наиболее удаленными от электронных облаков, которые участвуют в образовании химических связей.

Сигма-связь – это первая, более прочная связь, которая образуется при перекрывании электронных облаков в направлении прямой, соединяющей центры атомов.

Сигма-связь – это обычные ковалентные связи атомов углерода с атомами водорода.

Молекулы предельных углеводородов содержат только сигма-связи.

Пи-связь – это менее прочная связь, которая образуется при перекрывании электронных облаков вне плоскости атомных ядер.

Электроны π-связи и δ-связи теряют свою принадлежность к определенному атому.

Особенности δ-связи и π-связи:

1) вращение атомов углерода в молекуле возможно в случае, если они соединены δ-связью;

2) появление π-связи лишает атомы углерода в молекуле свободного вращения.

17. Строение и номенклатура углеводородов ряда этилена

Строение углеводородов: 1) этилен – первый представитель гомологического ряда веществ, в молекулах которых имеется двойная связь между атомами углерода; 2) ближайшие гомологи этилена – пропилен и бутилен; 3) названия углеводородов ряда этилена образуются путем изменения суффикса – ан соответствующего предельного углеводорода на – илен (этилен, пропилен и т. д.).

Особенности систематической (международной) номенклатуры: а) названия этих углеводородов принимают суффикс – ен (этен, пропен, бутен и т. д.); б) гомологи этилена должны отличаться друг от друга по составу молекул на группу атомов СН2; в) в молекуле каждого непредельного углеводорода при образовании двойной связи на два атома водорода меньше, чем в молекуле соответствующего предельного углеводорода; г) состав углеводородов ряда этилена (этена) выражается формулой СnН2n; д) непредельные углеводороды могут образовывать радикалы.

Реакция присоединения, характерная для всех алкенов:

1. Присоединение водорода.

Эта реакция протекает в присутствии катализатора – мелко раздробленного никеля, платины или палладия – при комнатной температуре.

Реакция гидрирования, или гидрогенизация, – это присоединение водорода к веществу.

При гидрогенизации олефины превращаются в предельные углеводороды.

2. Присоединение галогенов.

Реакция протекает при обычных условиях.

Дихлорэтан – это жидкость, которая хорошо растворяет органические вещества.

Реакция присоединения брома служит качественной реакцией на непредельные углеводороды.

3. Присоединение галогеноводородов.

Галогенопроизводные углеводороды можно получить двумя путями:

1) присоединение к этилену хлороводорода;

2) замещение водорода в этане на хлор.

4. Присоединение воды.

Реакция протекает в присутствии катализатора – серной кислоты.

Сначала происходит присоединение серной кислоты к этилену по месту разрыва двойной связи с образованием этилсерной кислоты.

Затем этилсерная кислота при взаимодействии с водой образует спирт и кислоту.

Реакция присоединения воды к этилену в присутствии твердых катализаторов используется для промышленного получения этилового спирта из непредельных углеводородов, которые содержатся в газах крекинга нефти (попутных газах), а также в коксовых газах.

Важным химическим свойством этилена и его гомологов является способность легко окисляться при обычной температуре.

При этом окислению подвергаются оба атома углерода, соединенные двойной связью.

Этилен горит светящимся пламенем с образованием оксида углерода и воды: С2Н4 + 3O2 → 2СO2 + 2Н2О.


    Ваша оценка произведения:

Популярные книги за неделю