Текст книги "Один на один с врагом: русская школа рукопашного боя"
Автор книги: Алексей Кадочников
Жанр:
Спорт
сообщить о нарушении
Текущая страница: 4 (всего у книги 14 страниц) [доступный отрывок для чтения: 6 страниц]
Человека, как любое физическое тело, в зависимости от поставленных задач исследования можно рассматривать как материальную точку, как твердое тело или как связанную биомеханическую систему тел.
Как материальную точку человека рассматривают тогда, когда его перемещения намного больше собственных размеров тела и когда не исследуют движения отдельных частей тела и его вращение. Например, при прыжке с парашютом (рис. 5) парящий под куполом человек может рассматриваться как точка, положение которой в неподвижной системе координат XYZ определяется тремя независимыми координатами х1, у1, z1. То есть в данном случае человек обладает тремя степенями свободы.
Рис. 5
Человека рассматривают как твердое тело конечных размеров тогда, когда важно учитывать не только его местоположение в пространстве, но и ориентацию тела (в частности, при изучении условий статического равновесия человека, а также его вращения в постоянной позе). Так, парашютист, выполняющий в затяжном прыжке элементы воздушной акробатики, перемещается в пространстве относительно неподвижной (земной) системы координат ХYZ. При этом ось OY направлена по нормали к поверхности Земли, ось ОХ – по касательной к горизонту, ось OZ – перпендикулярно первым двум осям.
Положение осей связанной системы xyz, а следовательно, и повороты парашютиста в земной системе координат, определяются тремя углами: φх, φy, φz. То есть парашютист, выполняя акробатические фигуры, может совершать повороты вокруг каждой из осей.
Рис. 6
Например, при выполнении фигуры «сальто» вращение тела происходит относительно постоянно ориентированной в пространстве фронтальной оси тела ох (см. рис. 7).
При выполнении «сальто с поворотом» тело парашютиста вращается одновременно относительно, по меньшей мере, двух осей. Первая из них (например, ох) имеет постоянную ориентацию, вторая (к примеру, продольная ось тела оy) изменяет свою ориентацию в пространстве.
Рис. 7
Итак, в свободном полете человек как твердое тело конечных размеров имеет шесть степеней свободы.
Линейные перемещения человека в рукопашном бою определяются изменением координат х1, у1, z1 его ЦМ (рис. 6) в неподвижной системе х1, у1, z1. Повороты тела относительно ЦМ измеряются тремя углами: φх, φy, φz. Так, например, положение осей ОХ и OZ связанной системы координат ХYZ на приведенном рисунке определяется поворотом тела человека вокруг вертикальной оси ОY на угол φy.
При отклонениях продольной оси тела от вертикали во фронтальной или глубинной плоскостях тела происходит поворот тела вокруг осей OZ1 или ОХ1 соответственно.
Опорная поверхность Х1OZ1 является связью, ограничивающей перемещения тела вдоль оси OY1.
Таким образом, рукопашник, стоящий на выпрямленных ногах, имеет пять степеней свободы: перемещения вдоль осей ОХ1, ОZ1 и вращения вокруг координатных осей ОХ1, ОY1, ОZ1. Согнув ноги в коленях (приняв боевую стойку), рукопашник приобретает дополнительную ограниченную степень свободы перемещения вдоль оси ОY1.
В общем случае в рукопашном бою каждая связь, ограничивающая перемещения тела, уменьшает число степеней свободы.
1. Фиксация одной точки тела противника сразу лишает его трех степеней свободы – линейных перемещений вдоль трех основных координатных осей.
2. Закрепление двух точек тела приводит к образованию оси, проходящей через эти точки. В этом случае у тела остается лишь одна степень свободы: вращение относительно данной оси.
3. Закрепление третьей точки, не лежащей на этой оси, полностью лишает противника свободы движений.
Число связей, а следовательно, число степеней свободы может изменяться в процессе выполнения двигательного действия! Например, гимнаст, выполняющий махи на перекладине (рис. 7), обладает всего лишь одной степенью свободы вынужденного движения относительно оси OZ – оси перекладины. При выполнении соскока «дугой с сальто» спортсмен имеет три степени свободы (дополнительные две – в плоскости ХОY). А при соскоке «сальто с поворотом» число степеней свободы возрастает до шести (в зависимости от сложности вращения).
И парашютист, выполняющий акробатические фигуры, и гимнаст, совершающий головоломный соскок, совершают сложные движения. Оба, управляя своим телом, меняют позу. Но в обоих случаях важно проследить за изменением ориентации тела в пространстве, не принимая во внимание взаимные перемещения частей тела. Этим оправдано модельное представление человека как твердого тела.
И, наконец, человека следует рассматривать как связанную систему тел, когда, кроме положения и ориентации человека в пространстве, важно знать взаимное расположение отдельных частей тела относительно друг друга. Это в одинаковой мере относится ко многим видам спортивной двигательной деятельности.
Описание выведения человека из состояния равновесия весьма затруднительно без учета движения всех частей тела. Тут уже, с точки зрения механики, речь идет о представлении тела человека как тела переменной конфигурации. При такой постановке вопроса для описания движений человека должно использоваться соответствующее модельное представление, которое учитывало бы особенности движения отдельных взаимосвязанных частей тела, влияющих на выполнение двигательного действия.
Такой моделью может служить рассматриваемая в дальнейшем связанная биомеханическая система тел.
Кинематические парыИскусственно созданную механическую систему тел, предназначенную для преобразования движения, называют механизмом. Главной особенностью всякого механизма является определенность движения его частей. Для того чтобы любое тело двигалось определенным образом, необходимо ограничить его подвижность другим телом.
Например, отдельно взятый цилиндрический стержень, ничем не ограниченный, может совершать разнообразные движения. Но если этот стержень поместить внутрь полого цилиндра (рис. 8), то движение стержня относительно цилиндра станет вполне определенным. Оно будет состоять из двух независимых движений: вращательного (1) и поступательного (2).
Такое соединение двух соприкасающихся тел, допускающее их относительное движение, называется кинематической парой.
Рис. 8
Тела, образующие кинематическую пару, называются звеньями. Звенья кинематической пары могут состоять из одного или нескольких жестко соединенных твердых тел. Поверхности, линии или точки соприкосновения звеньев называются элементами кинематических пар.
Если элементом соприкосновения звеньев является поверхность, кинематическая пара называется низшей.
Таблица 2
Низшие кинематические пары могут быть вращательными и поступательными (таблица 2). Большим преимуществом этих пар является малый износ элементов, так как соприкосновение звеньев происходит по поверхности и удельное давление в них невелико. Кроме того, эти кинематические пары обладают свойством инверсии (обратимости), то есть характер относительного движения не зависит от того, какое из двух звеньев закреплено.
Рис. 9
Если элементом соприкосновения звеньев является линия или точка, то такая пара называется высшей. Примером высшей кинематической пары может служить кулачковый механизм (рис. 9а) и зубчатая передача (9б). Удельное давление в таких механизмах очень велико, что вызывает повышенный износ их элементов и является большим недостатком. Однако ценным достоинством высших кинематических пар является их разнообразие. С их помощью значительно упрощается создание механизмов, обеспечивающих заданные сложные законы движения. Различают плоские и пространственные кинематические пары.
Плоские кинематические парыПлоской называется кинематическая пара, все точки звеньев которой в относительном движении перемещаются в одной или в параллельных плоскостях.
Плоские кинематические пары получили наибольшее распространение в технике; они проще, потому рассматриваются в первую очередь. Положение отдельно взятого звена в любой момент плоского движения определяется тремя независимыми координатами. Так, положение звена АВ (рис. 10) может быть задано двумя координатами x1, y1 любой его точки, например точки А, и третьей координатой – углом наклона φ1 звена к одной из координаных осей. Вместо угла φ1, достаточно знать любую из двух независимых координат точки В (х2 или y2).
Рис. 10
Действительно, рассматриваемое звено АВ может совершать два независимых поступательных движения вдоль координатных осей ОХ, ОY и одно вращательное движение вокруг оси OZ, перпендикулярной к плоскости ХОY.
А так как известно, что количество независимых координат определяет число степеней свободы, то, понятно, это отдельное звено в любой момент плоского движения имеет три степени свободы.
Если рассмотренное звено войдет в кинематическую пару с другим звеном, то оно окажется уже не свободным – на его относительное движение накладываются связи, уменьшающие число степеней свободы.
Рис. 11
Так, положение двух звеньев, образующих низшую вращательную кинематическую пару (рис. 11), в любой момент плоского движения может быть определено четырьмя независимыми координатами, например, x1, y1, φ1, φ2. Координаты x1, y1, φ1 определяют положение на плоскости звена 1; для определения относительного положения звена 2 достаточно знать угол φ2.
Это означает, что система имеет четыре степени свободы (но не шесть, как было до соединения звеньев в кинематическую пару).
То есть соединение двух звеньев в низшую вращательную кинематическую пару отнимает у системы две степени свободы.
Если в рассмотренной кинематической паре ограничить подвижность звена 1, например, зафиксировать точку А (рис. 12), совместив ее с началом координат, то положение такой системы на плоскости будет определяться двумя независимыми координатами φ1, φ2. То есть система будет иметь всего две степени свободы. Звенья высшей кинематической пары (рис. 13), взятые порознь, в любой момент плоского движения обладают в сумме шестью степенями свободы. Если же они объединены в кинематическую пару, то для однозначного указания положения этой системы на плоскости требуется пять независимых параметров, например, x1, y1, φ1, φ2, φ3. Координаты x1, y1, указывают положение центра вращения звена 1 на плоскости; угол φ1 определяет положение самого звена 1 (точка А) относительно его центра вращения; угол φ2 определяет расположение звена 2 относительно звена 1; наконец, угол φ3 ориентирует звено 2 (точка В) относительно его центра вращения.
Рис. 12
Рис. 13
Таким образом, высшая кинематическая пара уменьшает число степеней свободы на единицу.
Пространственные кинематические парыКинематическая пара на каждой из координатных осей называется пространственной, если все точки ее звеньев в относительном движении описывают пространственные кривые.
В любой момент пространственного движения положение отдельного звена как твердого тела определяется шестью независимыми координатами. Так, положение звена АВ (рис. 14) может быть задано координатами x1, y1, z1 любой его точки, например точки А, и тремя углами φ1, φ2, φ3 наклона звена к каждой из координатных осей. Вместо указанных углов бывает проще использовать три других независимых параметра-координаты x2, y2, z2 точки В.
Рис. 14
Таким образом, звено АВ как свободно движущееся в пространстве твердое тело имеет шесть степеней свободы. Когда это звено войдет в кинематическую пару с другим таким же звеном, оно окажется уже не свободным (как отмечалось, на его относительное движение накладываются связи, уменьшающие число степеней свободы).
Пусть два звена – АВ длиной L1 и ВС длиной L2 – соединены в низшую вращательную кинематическую пару (рис. 15) цилиндрическим шарниром.
Положение данной системы звеньев в любой момент ее пространственного движения может быть задано семью независимыми координатами. Координаты x1, y1, z1 точки А и координаты x2, y2, z2 точки B определяют положение в пространстве звена АВ. Для определения относительного положения звена BС достаточно знать угол φ2. Это означает, что система имеет семь степеней свободы (но не двенадцать, как было до соединения звеньев в кинематическую пару).
Рис. 15
Итак, соединение двух звеньев цилиндрическим шарниром в пространственную кинематическую пару отнимает у системы пять степеней свободы.
Если в рассмотренной кинематической паре ограничить подвижность звена АВ, например, зафиксировать точку А (рис. 16), совместив ее с началом координат, то положение такой системы в пространстве будет определяться четырьмя независимыми координатами x1, y2, z2, φ2. То есть данная кинематическая пара будет иметь всего четыре степени свободы.
Рис. 16
Кинематические пары в теле человекаКинематические пары, применяемые в технике и распространенные в природе, имеют принципиально важное отличие.
В технических механизмах кинематические пары устроены обычно так, что возможны их лишь вполне определенные, заранее заданные плоские движения.
Кинематические пары в теле человека – это подвижные соединения двух костных звеньев, обеспечивающие их произвольные пространственные движения. Возможности движения кинематических соединений определяются скелетным строением тела и управляющим воздействием мышц.
Кинематические пары в теле человека принято называть биокинематическими. Из всех биокинематических пар при изучении двигательных действий человека специалистов интересуют прежде всего верхние и нижние конечности тела, представляющие собой – по принятой классификации – низшие вращательные кинематические пары.
Рис. 17
На рис. 17 показана кинематическая модель верхней конечности человека. Шаровым шарниром 1 биокинематическая пара связана с туловищем; между собой звенья пары соединены цилиндрическим шарниром 2. Пространственные биокинематические пары конечностей могут быть замкнутыми или разомкнутыми. Они имеют постоянные и временные связи, которые и определяют, сколько и каких степеней свободы имеет данная рассматриваемая пара. Так, движения руки как разомкнутой биокинематической пары (рис. 18а) ограничены плечевым сочленением, исключающим линейные перемещения плеча 1 относительно туловища.
Ориентация руки в любой момент ее пространственного движения относительно туловища может быть описана пятью параметрами. Координаты xA, yA, zA (рис. 18б) определяют положение плеча 1, положение предплечья 2 относительно плеча задается углом φ2, поворот предплечья вокруг собственной оси – углом φ2.
Поворот предплечья на угол φ2 можно не учитывать, т. к. он не влияет на ориентацию руки в целом. При принятом допущении очевидно, что рука человека в общем случае имеет четыре степени свободы.
Фактическое же число степеней свободы руки зависит от ее ориентации в пространстве и ограничено пределами подвижности плечевого и локтевого суставов.
Рис. 18
Человек и биомеханикаПричины движений в биомеханике рассматриваются во взаимосвязи закономерностей механики и биологии не без учета роли человеческого сознания в целенаправленном управлении движениями.
Изучение движений в биомеханике двигательного аппарата человека в конечном счете направлено на изыскание способов совершения и совершенствования двигательных действий.
В биомеханике используют построенные на основе общей механики данные таких самостоятельных наук, как теория механизмов и машин, сопротивление материалов, теория упругости, аэрогидромеханика и другие.
Из биологических наук в биомеханике более всего используются данные анатомии и физиологии.
Биомеханика связана со многими отраслями знаний, в которых изучаются конкретные области прикладной двигательной деятельности.
Так, инженерная биомеханика смыкается с бионикой и инженерной психологией («человек и машина»). Она связана с разработкой роботов, манипуляторов и других технических устройств, расширяющих возможности человека в трудовой деятельности. Медицинская биомеханика дает обоснование методам протезирования, травматологии, ортопедии, лечебной физкультуры. Космическая биомеханика решает задачи подготовки космонавтов, обеспечения их работоспособности в условиях невесомости, а также двигательных действий при выходе в открытый космос.
Спортивная биомеханика решает общие и частные задачи изучения движений. Она дает не только теоретическое обоснование основ спортивной техники, но и вооружает знаниями, необходимыми для эффективного применения физических упражнений в качестве средства физического воспитания и повышения уровня спортивных достижений.
Освоение основ биомеханики помогает спортсмену разобраться в механизме движений человеческого тела, способствует более глубокому пониманию потенциальных двигательных возможностей человека.
Кинематика движений человекаВ биомеханике под кинематикой движений понимают «геометрию», то есть пространственную форму движений человека без учета его массы и действующих сил. Кинематика дает в целом только внешнюю картину движений. Причины возникновения и изменения движений раскрывает динамика.
Положение тела человека в пространстве в биомеханике принято описывать его местоположением, ориентацией и позой.
Местоположение характеризует, в какой части пространства находится в данный момент человек.
Ориентация тела иллюстрирует его поворот относительно неподвижной системы координат (вверх головой, горизонтально, вниз головой, «кругом»).
Поза тела показывает взаимное расположение отдельных частей тела человека относительно друг друга.
Определение местоположения обычно не связано с большими трудностями. Чтобы определить местоположение человека как твердого тела, достаточно указать три координаты какой-либо точки тела в неподвижной системе координат Х1У1Z1 (рис. 19).
В качестве такой точки обычно выбирают центр масс (ЦМ) тела. В принятой системе координат местоположение тела определяется тремя координатами x1, y1, z1.
Рис. 19
Определение ориентации тела человека – задача гораздо более трудная, особенно при сложных позах.
Прежде чем показать пути ее решения, остановимся на том, как определяются основные оси и плоскости человеческого тела.
Оси тела образуют так называемую связанную систему координат XYZ, начало отсчета которой совмещают с центром масс (ЦМ) тела.
Для того чтобы изменение ориентации связанной системы точнее отражало изменение ориентации тела в пространстве, направление продольной оси определяют так. Тело человека (в стойке руки вверх) делится горизонтальной плоскостью на две равные по весу половины. Линия, соединяющая центры масс верхней и нижней половин тела (и проходящая через общий ЦМ), и есть продольная ось тела. В основной стойке эта ось практически близка к вертикальной.
Поэтому продольную ось тела ОY (рис. 19) направляют вертикально; ось ОХ проводят горизонтально и называют фронтальной; ось OZ направляют перпендикулярно первым двум осям и называют глубинной. Оси связанной системы первоначально ориентированы так же, как и оси неподвижной системы. При повороте (вращении) тела вместе с ним относительно неподвижной системы поворачивается и связанная система координат.
Таким образом, ориентацию тела в пространстве характеризуют три угловых координаты φx, φy, φz (так называемые углы Эйлера).
Заметим, что при сложных позах положение ЦМ может выходить за пределы тела.
В биомеханике с целью облегчить описание движений человека (в частности, при выполнении отдельных элементов упражнений, приемов и т. д.) вводят понятия плоскостей тела.
Основные плоскости тела (рис. 20) и всякие другие, параллельные им, ориентированы в системе трех взаимно перпендикулярных осей тела.
Вертикальная плоскость YОХ, проходящая через ЦМ и разделяющая тело на переднюю и заднюю части (а также всякая параллельная ей плоскость), называется фронтальной.
Рис. 20
Вертикальная плоскость YOZ, проходящая через ЦМ и разделяющая тело на левую и правую части, называется глубинной (а также продольной, сагиттальной). Горизонтальная плоскость ХOZ, проходящая через ЦМ и разделяющая тело на верхнюю и нижнюю части, называется поперечной (горизонтальной, трансверсальной). При описании двигательных действий человека движения его тела описываются соответственно в указанных основных или параллельных им плоскостях.
Опорно-двигательный аппарат человекаВ повседневной жизни, выполняя те или иные движения, мы никогда не задумываемся над их природой. Для нас это как бы само собой разумеющееся, совершенно естественное явление. В действительности же управление движениями в человеческом организме – это очень сложный «технологический» процесс, требующий совместного и согласованного участия многих физиологических систем человека.
Все физические и психические реакции человека в конечном итоге приводят к движению. Великий русский ученый Сеченов И. М. писал: «Всё бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно к одному лишь явлению – мышечному движению. Смеется ли ребенок при виде игрушки, улыбается ли Гарибальди, когда его гонят за излишнюю любовь к Родине, дрожит ли девушка при первой мысли о любви, создает ли Ньютон мировые законы и пишет их на бумаге – везде окончательным фактом является мышечное движение». Как осуществляется управление движениями? В чем состоят трудности управления? Каковы пути совершенствования процесса управления движениями тела? Для того чтобы получить ответ на эти и ряд других непростых вопросов, предварительно следует познакомиться с устройством опорно-двигательного аппарата человека.
Опорно-двигательный аппарат предназначен для реализации двигательной деятельности человека (поддержания местоположения и ориентации тела в пространстве, перемещений и организации сложных движений при изменении позы и т. д.).
Опорно-двигательный аппарат человека состоит из двух систем: костно-суставной (скелета) и мышечно-сухожильной.