355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Марков » Эволюция человека. Книга 2. Обезьяны нейроны и душа » Текст книги (страница 7)
Эволюция человека. Книга 2. Обезьяны нейроны и душа
  • Текст добавлен: 29 сентября 2016, 04:11

Текст книги "Эволюция человека. Книга 2. Обезьяны нейроны и душа"


Автор книги: Александр Марков


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 7 (всего у книги 31 страниц) [доступный отрывок для чтения: 12 страниц]

Память закрепляется во сне

Аплизия, как и многие другие беспозвоночные животные с небольшим числом нейронов, примитивными органами чувств и ограниченными способностями к обучению, получает из внешнего мира сравнительно мало информации. Логические схемы, образуемые сетью межнейронных связей и служащие для анализа этой информации, у нее тоже сравнительно просты. Просты и модели реальности, производимые нервной системой аплизии, – паттерны возбуждения нейронов, возникающие в ответ на те или иные стимулы. В такой ситуации процесс запоминания можно, по-видимому, пустить на самотек, то есть обойтись без специализированных нейронных контуров, руководящих этим процессом. У животных с большим мозгом, таких как млекопитающие, дело обстоит иначе. Поступающей информации слишком много, модели реальности слишком сложны, динамичны, разнообразны и многочисленны. Чтобы запомнить абсолютно все, что видел, слышал, почувствовал, пережил, не хватит никаких мозгов. Нужно выбирать. Нужно отправлять на постоянное хранение только самую важную информацию. Поэтому у высших животных в процессе эволюции развиваются специализированные отделы мозга, берущие на себя функцию сортировки полученной информации, отделения зерен от плевел и записывания отобранных, разложенных по полочкам сведений в долговременную память.

Долговременная память у высших животных делится на сознательную (эксплицитную, или декларативную) память о событиях, фактах, ощущениях и бессознательную, имплицитную, или процедурную, память (например, о двигательных навыках). Процедурная память хранится в моторной коре (моторная кора – часть коры головного мозга, отвечающая за планирование и осуществление произвольных движений. Моторная кора тянется полосой вдоль заднего края лобных долей, там, где они граничат с теменными долями) и мозжечке. В ее формировании участвуют такие отделы мозга, как стриатум, или полосатое тело, и миндалина (миндалевидное тело). Декларативная память локализуется в тех отделах коры, которые отвечают за восприятие соответствующих сигналов, – например, память об увиденном хранится в зрительной коре. Ключевым отделом мозга, необходимым для запечатления приобретенного опыта в виде долговременной декларативной памяти, является гиппокамп.

Роль гиппокампа в формировании декларативной памяти была открыта Брендой Милнер и ее коллегами в 1950—1960-х годах в ходе исследования пациента, которому удалили гиппокамп, чтобы вылечить от тяжелой эпилепсии. Ожидаемый терапевтический эффект был достигнут, однако несчастный пациент полностью утратил способность что-либо запоминать. Он прекрасно помнил всю свою жизнь до операции, сохранил здравый рассудок и способность поддерживать разумную беседу (только без перескакивания с одной темы на другую), однако все события, происходившие с ним после операции, задерживались в его памяти лишь на несколько минут, а потом безвозвратно забывались. При этом способность к формированию долговременной бессознательной (процедурной) памяти у него сохранилась. Например, он мог вырабатывать новые двигательные навыки в результате тренировки, хотя самих тренировок не помнил.

В последнее время внимание ученых все более привлекает связь памяти и сна. Установлено, что во сне происходит закрепление обоих типов долговременной памяти, причем декларативная память закрепляется в фазе медленного сна, а процедурная – в фазе быстрого сна (так называемого REM-сна, от слов rapid eye movement – "быстрое движение глаз").

В опытах на крысах было показано, что во время медленного сна в гиппокампе возбуждаются те же группы нейронов и в той же последовательности, что и в процессе обучения, проводившегося накануне. Это навело ученых на мысль, что гиппокамп во сне многократно "прокручивает" полученную днем информацию, что, вероятно, способствует ее лучшему запоминанию – "протаптыванию дорожек" в нейронных сетях.

Однако активная роль гиппокампа в процессе закрепления памяти во сне не является окончательно доказанной. Существует альтернативная гипотеза, согласно которой медленный сон способствует закреплению декларативной памяти просто потому, что это самая глубокая фаза сна, во время которой мозговая активность снижается до минимума, причем отношение "осмысленных" (важных, сильных) сигналов к различным "шумам" становится максимальным.

Чтобы получить некоторое представление о том, какими методами нейробиологи решают подобные вопросы, рассмотрим один остроумный эксперимент, при помощи которого германским ученым недавно удалось получить новые свидетельства в пользу того, что запоминание во время медленного сна – процесс активный, требующий работы гиппокампа (Rasch et al., 2007).

Эксперимент проводился на добровольцах, которых усаживали за компьютер и предлагали поиграть в игру на запоминание. Игра состоит в следующем. На экране компьютера изображены 30 карточек рубашкой кверху (карточки расположены пятью рядами по шесть штук в каждом). Электронная колода состоит из 15 пар карточек, различающихся рисунком на лицевой стороне. Одна из карт переворачивается, так что испытуемый может видеть рисунок. Через секунду переворачивается вторая карта с тем же рисунком. Испытуемый должен запомнить их расположение. Через три секунды обе карты снова переворачиваются рисунком вниз, а еще через три секунды производится точно такая же демонстрация следующей пары карточек. После того как все 15 пар карточек показаны по два раза, начинается проверка памяти. Открывается одна из карт, а испытуемый должен при помощи мыши указать, где находится парная. Вне зависимости от правильности ответа парная карта открывается на три секунды, так что обучение продолжается и во время тестирования. Все это длится до тех пор, пока испытуемый не выучит расположение десяти пар из 15.

В процессе обучения испытуемые обоняли аромат розы, который подавался им через специальную носовую маску. После этого добровольцы отправлялись спать как были, в масках, да еще и с электродами на голове для снятия электроэнцефалограммы. Неудивительно, что для эксперимента отбирались здоровые молодые люди, некурящие, непьющие и не имеющие проблем со сном.

Как только энцефалограмма показывала, что началась фаза медленного сна, половине испытуемых подавали через маску аромат розы, а другой половине – нет. Утром проверяли, кто лучше запомнил расположение карточек. Оказалось, что первая группа испытуемых усваивала материал гораздо лучше. Кроме того, при помощи магнитно-резонансной томографии удалось показать, что обонятельный стимул, поступающий во время медленного сна, активизирует нейроны гиппокампа.

Исследователи поставили также три контрольных эксперимента. В первом из них во время обучения запах не подавался, а во сне подавался так же, как и в основном опыте. Никакого улучшения запоминания зарегистрировано не было. Это означает, что запах розы способствует закреплению навыков не сам по себе, а только как стимул, ассоциативно связанный с процессом обучения. Во втором контрольном эксперименте запах подавали во время обучения и во время фазы быстрого сна. В этом случае обонятельный стимул тоже никак не повлиял на запоминание. Это подтверждает прежние результаты, согласно которым именно фаза медленного сна является ключевой для закрепления осознанных "декларативных" воспоминаний. Наконец, в третьем контрольном эксперименте запах подавали во время обучения, а затем еще раз во время бодрствования (перед сном). Это тоже не повлияло на результаты утренней проверки.

Полученные результаты подтверждают гипотезу, согласно которой закрепление осознаваемых воспоминаний (декларативной памяти) во время медленного сна – это активный процесс, идущий при участии гиппокампа. Обонятельные стимулы, ассоциирующиеся с усвоенными накануне знаниями, дополнительно стимулируют гиппокамп, который от этого, вероятно, начинает активнее "прокручивать" те последовательности нервных импульсов, которые возникали в нем накануне в процессе обучения (как было показано ранее на крысах).

А что же имплицитная, или процедурная, память? Ученые провели точно такую же серию экспериментов с применением другого вида обучения, ориентированного именно на этот вид памяти – на формирование моторных навыков. Вместо игры с карточками испытуемых просили как можно более быстро и точно раз за разом набирать на клавиатуре определенную последовательность из пяти символов. Наутро все испытуемые показывали в этом тесте результаты лучшие, чем накануне вечером, то есть приобретенные моторные навыки за ночь каким-то образом закреплялись. Однако никакие игры с запахами не влияли на это закрепление, в том числе и тогда, когда запах подавался во время фазы быстрого сна.

Этот результат может показаться странным, поскольку известно, что моторные навыки закрепляются как раз во время этой фазы. По мнению авторов, дело тут в том, что обонятельные стимулы не могут так же легко вступать в ассоциативную связь с "моторными" (процедурными) воспоминаниями, как с декларативными. Действительно, те отделы мозга, где обрабатывается обонятельная информация, весьма тесно связаны с гиппокампом. Это известно из анатомии мозга и подтверждается тем, что запахи, ассоциативно связанные с важными событиями в жизни человека, являются мощным средством для пробуждения осознанных воспоминаний. Что же касается связи обонятельных отделов мозга со стриатумом, моторной корой и мозжечком (отделами, ответственными за процедурную память), то она, по всей видимости, является значительно более опосредованной.

В данном исследовании использовались обонятельные стимулы (а не зрительные, слуховые или тактильные) просто потому, что от них человек не просыпается. Но полученные результаты заставляют задуматься, почему обоняние – казалось бы, наименее важное из наших пяти чувств – оказалось так тесно связано с самыми глубинными и сложными процессами, происходящими в нашем мозге. Очевидно, это наследие тех времен, когда у далеких предков человека обоняние играло гораздо более важную роль, чем сегодня.

Потеря памяти не ведет к утрате «теории ума»

"Теория ума" считается одной из основных отличительных черт человеческого мышления. В какой-то степени этой способностью обладают и другие животные – обезьяны, слоны, дельфины, врановые птицы (см. главу "В поисках душевной грани"), – но люди, по всей видимости, превосходят их по точности и глубине понимания чужих мыслей, чувств, целей и намерений.

"Теория ума" тесно связана с самосознанием, в ее основе лежит умение судить о других "по себе". Поэтому психологи считали само собой разумеющимся, что для понимания чужих мыслей абсолютно необходима так называемая эпизодическая память, то есть память о собственных мыслях, переживаниях и событиях личной жизни.

Мы уже знаем, что долговременная память делится на декларативную (сознательную, эксплицитную – память о фактах и событиях) и процедурную (бессознательную, имплицитную – например, память о двигательных навыках). Декларативная память в свою очередь делится на семантическую и эпизодическую. Семантическая память – это абстрактные, безличные знания об объектах, событиях, фактах и связях между ними, никак не связанные с личным опытом. Эпизодическая память, напротив, хранит информацию о событиях личной жизни, о собственных переживаниях и мыслях.

Так вот, считалось, что именно эпизодическая память теснее всего связана с "теорией ума", что без личных воспоминаний невозможно понять мысли и мотивацию поступков других людей.

Для проверки подобных идей огромную ценность представляют люди, которые в результате травмы или болезни утратили выборочно те или иные психические функции. Мы уже упоминали о пациенте, который вместе с гиппокампом утратил способность к формированию декларативных (но не процедурных) воспоминаний. Изучение этого пациента обеспечило прорыв в понимании механизмов памяти.

Недавно в руки канадских психологов попали сразу два уникальных пациента, у которых в результате черепно-мозговой травмы произошли психические изменения еще более редкого и избирательного свойства (Rosenbaum et al., 2007). Оба мужчины (К. С. и М. L.) стали объектами пристального внимания ученых из-за дорожной аварии (один был мотоциклистом, другой велосипедистом). У обоих от сильного удара головой полностью отшибло эпизодическую память. При этом большинство других психических функций осталось в пределах нормы. Пациенты сохранили нормальный уровень интеллекта (IQ = 102 и 108). При них остались все те знания, которые они успели получить до травмы (то есть семантическая память не пострадала). Правда, способность приобретать новые знания они в значительной степени утратили из-за повреждений гиппокампа и других отделов мозга. Но все личные воспоминания стерлись напрочь. Пациенты не могут вспомнить ни одного эпизода из своей жизни – ни до травмы, ни после.

Исследователи, наблюдавшие пациентов, были удивлены тем обстоятельством, что в общении эти люди казались совершенно нормальными, вплоть до того, что у К. С. даже сохранилось тонкое чувство юмора. А ведь без теории ума, то есть без понимания мыслей и чувств других людей, нормальное общение и юмор едва ли возможны. Это и навело ученых на мысль, что у них есть уникальный шанс опровергнуть гипотезу о неразрывной связи теории ума с эпизодической памятью.

Пациентам предложили пройти серию стандартных тестов, специально разработанных для выявления дефектов "теории ума". Те же задания были предложены контрольной группе из 14 здоровых людей, близких по уровню образования и социальному статусу к двум исследуемым мужчинам. В частности, там были тесты, в которых испытуемый должен был понять, что другой человек не знает чего-то, что самому испытуемому известно, или разобраться в поведении двух людей, один из которых имеет ошибочное представление о том, что думает или знает другой. В других тестах нужно было понять, не нанес ли один человек другому непреднамеренную обиду в той или иной ситуации, и объяснить, почему не следовало так поступать и что именно чувствовал обиженный. Были также тесты на способность понимать чужие эмоции по выражению лица. Подобные тесты применяют при диагностике различных форм аутизма (люди, страдающие аутизмом, имеют ослабленную "теорию ума" и обычно не справляются с такими заданиями).

Оба пациента справились со всеми тестами ничуть не хуже здоровых людей. Авторы сделали из этого справедливый вывод, что эпизодическая память не является обязательным условием наличия у человека нормальной "теории ума". По-видимому, для этого вполне достаточно одной лишь абстрактной семантической памяти. Впрочем, полученный результат не доказывает, что эпизодическая память не нужна для формирования теории ума. Очевидно, что умение понимать чужие мысли и поступки сформировалось у пациентов еще до травмы, когда с эпизодической памятью у них все было в порядке. И все же это исследование заставляет задуматься о том, насколько глубоко "вмонтированы" в структуру человеческого мозга такие высшие социально ориентированные способности, как "теория ума".

Речной рак принимает решение

В нейробиологии успех исследований самым радикальным образом зависит от удачного выбора объекта. Эрик Кандель, получивший в 2000 году Нобелевскую премию за исследования памяти, рассказывает в своих мемуарах (в январе 2011 года, когда я пишу эти строки, великолепная книга Канделя «В поисках памяти» уже переведена на русский язык и готовится к печати), что поворотным пунктом в его карьере стало решение сменить объект. Тайны памяти, ускользавшие от исследователей, пока они работали на кошках, удалось раскрыть в ходе изучения морского моллюска аплизии. Не в последнюю очередь этому способствовало то обстоятельство, что нейроны аплизии гораздо крупнее кошачьих. Это позволяет следить за работой индивидуальных нервных клеток – например, втыкая в них электроды и регистрируя электрическую активность. Результаты, полученные на аплизии, впоследствии оказались вполне приложимыми и к кошкам, и к людям.

Механизмы принятия решений изучают обычно на млекопитающих – животных с чрезвычайно сложной нервной системой и мозгом, состоящим из сотен миллионов очень мелких нейронов. Даже самые мощные современные методы, такие как магнитно-резонансная томография, позволяют в лучшем случае найти участки мозга или большие группы нейронов, участвующие в тех или иных этапах принятия решения в неоднозначной ситуации (Gold, Shadlen, 2007). Чтобы добраться до более тонких деталей, нужен объект попроще, и желательно с крупными нейронами. Впрочем, сначала нужно убедиться, что такие животные действительно способны принимать «осмысленные» (то есть целесообразные, адаптивные) решения на основе комплексного анализа разнородной информации, подобно тому как это делают умные млекопитающие.

Мы уже знаем, что даже отдельно взятый нейрон – базовый элементарный блок нервной системы – по сути дела является маленькой биологической машинкой для принятия одного из двух альтернативных решений (возбудиться или нет) на основе анализа разнородных входящих сигналов. Понятно, что из нескольких таких блоков в принципе нетрудно сконструировать более сложный контур, обеспечивающий осмысленное поведение организма. Но это теория, а как обстоит дело на практике?

Результаты экспериментов на раках, проведенных недавно психологами и нейробиологами из Мэрилендского университета (США), показали, что сравнительно простая нервная система рака эффективно справляется с задачами, требующими принятия решений (то есть осмысленного, целесообразного выбора одного из нескольких альтернативных вариантов поведения в зависимости от ситуации) (Liden et al., 2010).

В ряде работ, выполненных в последние годы, было показано, что раки могут стать перспективным объектом для нейробиологических исследований. Поэтому интерес ученых к этим животным вполне понятен. Одно из самых удобных свойств раков заключается в том, что в осуществлении некоторых важных поведенческих реакций у них участвуют немногочисленные очень крупные нейроны, электрическую активность которых можно регистрировать неинвазивными методами – помещая электроды просто в воду рядом с раком и ничего не втыкая в само животное.

Авторы исследовали реакцию молодых раков Procambarus clarkii на движущиеся тени (см. рисунок). В опытах приняли участие 259 раков. Чтобы исключить эффекты обучения и привыкания, каждого рака использовали только в одном опыте.

Схема экспериментальной установки. Проголодавшегося рака выпускали в правую часть аквариума, после чего он шел влево, на запах пищи. Когда рак достигал первого фотодиода, на него начинала надвигаться тень. При помощи электродов регистрировали активность медиальных гигантских нейронов. По рисунку из Liden et al., 2010.

Заметив приближающуюся тень, рак либо замирает, либо резко бьет хвостом и отпрыгивает далеко назад. Обе реакции – защитные. В природе движущаяся тень с большой вероятностью означает приближение хищника – например, крупной рыбы или птицы. В эксперименте использовали тень от пластиковой непрозрачной пластины, и раки никогда не игнорировали ее. В каждом опыте непременно наблюдалась одна из двух реакций – либо замирание, либо удар хвостом.

Ранее было установлено, что удар хвостом происходит в результате возбуждения двух гигантских нейронов, расположенных в брюшной нервной цепочке и проходящих вдоль всего тела рака (medial giant interneurons, MG). Возбуждение этих нейронов регистрировалось при помощи двух электродов. Электрический импульс пробегает по гигантским нейронам примерно за одну миллисекунду до того, как начнут сокращаться мышцы брюшка. То есть фактически приборы регистрируют принятое раком решение ударить хвостом еще до самого удара. Что касается реакции замирания, то она провоцируется возбуждением одного-единственного нейрона; этот нейрон известен, но в данном эксперименте его активность не регистрировалась.

Оказалось, что рак решает, как ему поступить – замереть или ударить хвостом, – в зависимости от скорости движения тени. Если тень надвигается медленно (1 м/с), то рак, скорее всего, прыгнет. При виде быстрой тени (4 м/с) – замрет. Эти скорости примерно соответствуют реальным скоростям движения хищных рыб.

Смысл такого поведения довольно очевиден. Если хищник движется не очень быстро, есть шанс спастись от него бегством. Это надежнее, чем замирать и надеяться, что тебя не заметят. Но если враг мчится со скоростью 4 м/с, прыгать от него бесполезно – догонит. Остается замереть и положиться на удачу. Похожее поведение характерно для грызунов: они тоже чаще реагируют замиранием, а не бегством, на угрозу, от которой трудно или невозможно убежать.

Решение рака зависит от скорости движения тени. По горизонтальной оси – скорость тени (м/с), по вертикальной – процент принятых решений; серым цветом показаны замирания, черным – удары хвостом. По рисунку из Liden et al., 2010.

От скорости тени зависело не только само решение, но и время, затраченное раком на его принятие. Те раки, которые в итоге выбрали прыжок, раздумывали дольше, если тень надвигалась не очень быстро. Между началом движения тени и возбуждением MG проходило около 80 мс при скорости тени 1 м/с и лишь около 65 мс при скорости 4 м/с. Впрочем, раки все равно не успевали отпрыгнуть до того, как тень их накроет: при максимальной скорости движения тени она настигала их за 44 мс.

Могут ли раки, принимая решение, учитывать еще какие-то факторы, кроме скорости движения тени? Прыжок обходится раку довольно дорого: помимо того что на столь резкое движение тратится много сил, рак после прыжка оказывается дальше от своей цели – в данном случае от источника вкусного запаха, к которому он полз. Кроме того, после прыжка ему приходится дольше приходить в себя, прежде чем он сможет продолжить путь. Раки начинали снова ползти на запах в среднем через 11 с после реакции замирания и через 29 с после удара хвостом. На то, чтобы добраться до цели, в первом случае уходило в среднем 47 с (от начала эксперимента), а во втором – целых 140 с. В природе раки часто сталкиваются с дефицитом пищи и дерутся за нее друг с другом. Поэтому раку невыгодно шарахаться от каждой тени. Принимают ли раки в расчет это обстоятельство?

Авторы провели еще одну серию экспериментов с переменной концентрацией пищевого запаха и со скоростью движения тени 1 и 2 м/с. Ученые предположили, что более сильный – а значит, более привлекательный – запах пищи, возможно, будет склонять раков к тому, чтобы реже прыгать и чаще замирать. Это предположение подтвердилось: концентрированный запах пищи достоверно снизил частоту прыжков, соответственно повысив частоту замираний. Особенно четко эта закономерность проявилась при скорости тени 2 м/с. При низкой скорости (1 м/с) эффект был сходный, но более слабый.

Исследование показало, что процесс принятия решений у раков в общих чертах похож на таковой у млекопитающих. Раки интегрируют информацию, поступающую от разных органов чувств (в данном случае – от глаз и обонятельных рецепторов), "взвешивают" значимость этих сигналов и принимают решение на основе результатов взвешивания. Сам акт принятия решения состоит в том, что несколько ключевых нейронов, на которых сходятся окончания других нервных клеток, либо возбуждаются, либо нет.

Разумеется, для того чтобы осуществлять подобные аналитические процедуры – и в результате совершать вполне осмысленные, адаптивные поступки, – вовсе не нужно обладать сознанием (в одной англоязычной научно-популярной книге – к сожалению, не могу вспомнить, в какой именно, – мне попалась очаровательная (и при этом абсолютно верная) фраза: «Чтобы учиться, не нужно обладать ни разумом, ни сознанием». По-моему, она подошла бы в качестве девиза многим образовательным учреждениям). Даже очень простые нейронные контуры могут справляться с такой работой, совершая ее автоматически, без всякого осознания или рефлексии, подобно интерактивной компьютерной программе. Эта простая мысль до сих пор кажется чуждой многим людям, что вообще-то немного странно в наш компьютерный век. Изученное в обсуждаемой работе поведение раков нетрудно запрограммировать. Наверняка можно сделать искусственного автоматического рака, который будет реагировать на тени и запахи совсем как живой. Подобные роботы уже существуют: например, удалось сделать механических тараканов, которых живые тараканы принимают за «своих» и даже считаются с их «мнением», когда нужно решить, в каком из нескольких укрытий лучше всем вместе спрятаться (тараканы – большие коллективисты) (Halloy et al., 2007).

Вряд ли на раках можно изучать сложные мыслительные процессы, характерные для человека и других млекопитающих, но базовые нейрологические механизмы принятия решений, по-видимому, сходны у нас и у раков. Изучать их на раках гораздо проще, чем на обезьянах и крысах, что делает раков перспективными объектами нейробиологических исследований.

Рассмотренный пример также помогает понять, почему результаты мыслительных процедур у людей и других животных часто бывают предельно дискретными (контрастными, категориальными) (соображения, изложенные в этом абзаце, автор позаимствовал у лингвиста С. А. Бурлак, которая высказала их на антропологическом семинаре в Московском Государственном Дарвиновском музее в конце 2010 года). Рак не может наполовину замереть, наполовину прыгнуть. Нужно выбрать одно из двух и затем уже действовать решительно, не оглядываясь на упущенные альтернативные возможности. Кроме того, как мы уже говорили, категоричность изначально заложена в саму структуру нейрона. Нейрон не может послать по аксону половину или семь восьмых потенциала действия. Все или ничего, ноль или единица, белое или черное. Надо ли удивляться, что люди так любят преувеличивать контрастность наблюдаемых различий между похожими объектами, что мы склонны искать (и, черт побери, находить!) четкие границы даже там, где их со всей очевидностью нет. Как, например, в эволюционном ряду, соединяющем нечеловеческих обезьян с человеком.

"Нет, вы все-таки скажите нам точно, в какой момент обезьяна стала человеком!" – вот типичное требование, предъявляемое публикой ученым, когда речь заходит об антропогенезе. Не скажу. Зато вы можете спросить у речного рака, на какие категории делятся хищники. Он вам объяснит, что хищники делятся на две категории, которые невозможно спутать и между которыми вообще нет ничего общего. Есть медленные хищники – от них нужно прыгать. Есть быстрые хищники – от них не убежишь, нужно замирать. Вот и все. Переходных форм не существует. Для такой логики достаточно пары нейронов. Для иной – часто не хватает и ста миллиардов.


    Ваша оценка произведения:

Популярные книги за неделю