355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Никонов » Верхом на бомбе. Судьба планеты Земля и ее обитателей » Текст книги (страница 2)
Верхом на бомбе. Судьба планеты Земля и ее обитателей
  • Текст добавлен: 12 октября 2016, 02:37

Текст книги "Верхом на бомбе. Судьба планеты Земля и ее обитателей"


Автор книги: Александр Никонов


Жанр:

   

Публицистика


сообщить о нарушении

Текущая страница: 2 (всего у книги 18 страниц) [доступный отрывок для чтения: 7 страниц]

Момент количества движения был сброшен – фигурист раскинул прижатые руки, и его вращение замедлилось. Туманность стала крутиться медленнее, поэтому силы Кориолиса в центре сгущения ослабли почти до нуля, струи плазмы перестали закручиваться в спирали, соленоид разрушился, а с ним отключилась генерация магнитного поля небулы.

Получается, что небула будто специально включила собственное магнитное поле, чтобы сбросить часть массы для формирования планетной системы. Сколько же длился этот космический миг сброса части лишней массы и формирования протопланетного диска? Ничтожных сто лет! Впечатляющий мгновенный аккорд после миллиона лет поначалу неспешного, а потом ускоряющегося сгущения!

Ну а дальше пошло как по маслу. Поскольку скорость вращения центрального сгущения (протосолнца) упала, центробежные силы уже не могли противостоять гравитации, газ начал активно сжиматься, температура расти, и, в конце концов, в центре всей этой газовой кучи, состоящей в основном из водорода, начались термоядерные реакции – зажглась звезда.

А что в это время происходило со сброшенным газовым бубликом, крутящимся вокруг звезды? Он начал жить своей жизнью. И жизнь эта была удивительной.

Магнитное поле небулы до его отключения было довольно сильным. А внутренняя часть протопланетного диска, охваченная этим полем, была ионизированной, то есть токопроводящей. Когда рубильник был выключен (соленоид распался) и поле стало разрушаться, в токопроводящем диске навелись круговые электрические токи. Известное дело: вспомните школьный опыт – учитель размыкает цепь в индукционной катушке, и стрелка вольтметра делает мах, фиксируя скачок напряжения. Это происходит из-за того, что в катушке наводится ток, который стремится сохранить магнитное поле от распада. В школьном опыте это явление (скачок напряжения) продолжается долю секунды. Но в небуле катушка соленоида была в тысячу миллиардов раз больше. Поэтому скачок напряжения растянулся на тысячи лет. И все это время во внутренней части протопланетного диска (где потом сформировались планеты земного типа) гуляли мощные электротоки.

В результате газовый бублик стал разделяться на множество более тонких отдельных колец. Это произошло потому, что токи, текущие в одном направлении, притягиваются. (Опять-таки школьный опыт – притяжение друг к другу проводников с однонаправленным током.) Сначала этих тонких колец вокруг протосолнечной небулы было очень много, но потом они стали сливаться друг с другом. Причем слияние нескольких соседних тонких газовых колец в одно не приводило к его утолщению. Напротив, сечение колец уменьшалось, они становились все плотнее и плотнее по тем же самым причинам взаимопритяжения.

А потом произошло необычное явление – крутящиеся вокруг протосолнца тонкие газовые обручи начали в отдельных местах словно перетягиваться невидимыми нитками, превращаясь в кольцевую связку «сосисок» неравной длины. В физике это явление называется пинч-эффектом: когда через плазменный шнур течет ток, на нем начинают образовываться кольцевые манжеты из магнитных силовых линий, которые вскоре пережимают проводник полностью.

Позже под действием гравитации эти сосиски превратились в газовые шары – глобулы, из которых потом собрались планеты. Разновеликих глобул были десятки тысяч, а их диаметры достигали миллиона километров.

Любопытно, что, как только в оторвавшемся от небулы газовом бублике навелись токи, бублик засветился мерцающим белым светом – по тем же причинам, по которым светится неоновая лампа. И чем больше потом уплотнялись тонкие плазменные кольца, получившиеся из распавшегося бублика, тем ярче они светились. При этом Солнца на тот момент еще не было, оно только-только раскочегаривалось и едва теплилось багрово-красным цветом.

Дальнейший процесс сборки планет из газовых глобул современной науке хорошо известен, его прекрасно описали математически российские ученые Тимур Энеев и Николай Козлов еще в 1980 году. Причем интересно, что их замечательное открытие было сделано, что называется, «от бедности». Точнее говоря, для упрощения работы.

До Энеева и Козлова считалось, что планеты собирались из притягивающихся друг к другу твердых частичек – сначала маленьких пылинок, потом кусков покрупнее, типа метеорита, затем из штуковин размером с добрый астероид. Но математически просчитать столкновение мириадов упругих частичек на тогдашних ЭВМ было невозможно из-за разных результатов соударений. Ведь при соударении твердых частичек возможно как их слипание, так и дробление, а также упругий удар с разлетом. ЭВМ могла просчитать только тысячу таких взаимодействующих частичек. Слишком мало!.. Задача представлялась неразрешимой. А посчитать хотелось. Поэтому Энеев и Козлов сделали себе поблажку. Они решили, что каждое сближение двух частиц завершается их слиянием, а не отталкиванием и дроблением. Это позволило увеличить число частичек с тысячи до десятков тысяч. Но по физической сути это допущение означало одно: ученые фактически отказались от модели объединения твердых тел и перешли к модели абсолютно неупругих соударений, похожих на слияния капелек ртути.

Совершенно другая физика! Противоречившая тогдашним представлениям о рождении солнечной системы, зато делавшая возможными расчеты.

Провернув этот хитрый финт, Энеев и Козлов загрузили советскую ЭВМ исходными данными (протопланетный диск плотно упакован газовыми сгустками – глобулами, которые вращаются по круговым орбитам в поле силы тяжести массивного центрального тела и гравитационно взаимодействуют друг с другом) и пошли, надо полагать, пить чай, пока шкафы ЭВМ грелись и гудели. Подсчет дал неожиданный результат. Неожиданно прекрасный, я бы сказал. Машина, погудев, показала картину Солнечной системы, полностью соответствующую реальной! Модель Энеева-Козлова выдала не только такие принципиальные параметры Солнечной системы, как необходимое число планет и закон Тициуса-Боде (закон планетарных расстояний), но даже особенности вращения отдельных планет, например, обратное вращение Венеры!

Это могло означать только одно: модель, скорее всего, правильная, и соударения действительно шли неупруго. Но для окончательного триумфа модели и присвоения ей звания истинной нужно было еще сделать предсказание. И такое предсказание Энеев и Козлов сделали: в соответствии с их моделью в Солнечной системе должен быть еще один пояс астероидов – за Нептуном. Всем, кроме французов, известен пояс астероидов между Марсом и Юпитером. Но даже ученым тогда ничего не было известно о втором поясе астероидов. Однако позже этот пояс был открыт, там крутятся сотни астероидов диаметром по 200–300 км…

Так гипотеза стала теорией. Оставался лишь один вопрос: почему соударения протопланетных глобул были неупругими, хотя, по идее, должны были быть упругими? Сейчас ответ на него найден: ионизация газа, которая постоянно поддерживалась короткоживущими радиоактивными элементами, не позволяла частичкам вещества собираться в твердые и потому упругие комки – электростатическое отталкивание положительно заряженных ионов противилось силам всемирного тяготения. Потому-то сбор планет происходил не из твердых частиц и тел, но из газовых протопланетных сгустков – глобул. По мере сбора протоземли ее масса увеличивалась и, соответственно, возрастали силы гравитационного стягивания. Это приводило к увеличению средней плотности. В результате радиус растущей протопланеты оставался в пределах миллиона километров. В таком же состоянии (газовых протопланет) находились первое время и другие планеты земного типа. И лишь затем началась конденсация, поскольку к этому времени подвымерли короткоживущие изотопы и стала спадать степень ионизации.

В газовой протопланете, объединенной силами гравитации, рост крупных твердых тел был невозможен, и конденсация протовещества с последующим уплотнением его в твердую планету была подобна «мягкому пеплопаду» к центру тяжести.

Происходила она довольно медленно – в течение следующего миллиона лет – и напоминала то ли слияние капель, то ли слипание крупных хлопьев пепла в медленном полете.

Из этого «пепла» и получилась Земля.

Глава 2. Ингредиенты

Сейчас Земля напоминает слоеный пирог. Внутри – жидкое ядро с твердым ядрышком, выше – мантия, еще выше – твердая корочка. Но чтобы правильно приготовить пирог, нужно знать состав исходных продуктов. Каким он был? Это важный вопрос, от которого зависит наше с вами будущее.

Но прежде ответим на другой вопрос: откуда автор знает, что происходило четыре с половиной миллиарда лет тому назад с Солнечной системой, если он там не был? Отвечу: от науки. Наука над этой проблемой очень много билась.

Науке, например, давно было известно, что 98 % момента количества движения Солнечной системы сосредоточено в ее планетах, хотя масса планет составляет только 1/700 долю от массы Солнца (момент количества движения – это произведение массы на скорость и на расстояние до центра вращения: М = mvr). И было совершенно непонятно, каким же образом небуле удалось сбросить часть вещества вместе с моментом количества движения для дальнейшего производства из него планетной системы. Этот больной вопрос очень долго не находил ответа, пока английский астрофизик Фред Хойл не предположил, что в сбросе лишней массы туманности могло помочь ее собственное магнитное поле.

Как только магнитное поле включилось и заставило туманность вращаться, как единое целое, то есть с одной угловой скоростью, так сразу момент количества движения, выраженный через эту самую угловую скорость (w), приобрел следующий вид: М = mwr2. В формуле появился квадрат! То есть в системе, которая вращается с одной угловой скоростью, момент количества движения «сам по себе» сместился к краю системы. Именно поэтому и произошел отрыв. А когда от экватора небулы оторвался газовый бублик, вместе с ним ушел и «лишний» момент количества движения. Каковой мы сегодня имеем удовольствие наблюдать и рассчитывать. Прекрасное объяснение!

Догадке Хойла долго не верили. Дело в том, что молодые звезды, которые только-только зажглись, не имеют магнитного поля, выходящего за пределы самой звезды. А для сброса бублика нужно было поле, протянувшееся на сотни миллионов километров от протосолнца! И это смущало. Но ведь Хойл и не говорил ничего про уже зажегшуюся звезду, он говорил именно о протозвезде – небуле. И его догадка о том, что в рождении планетной системы решающую роль сыграла короткая вспышка магнитного поля небулы, позже была успешно дополнена физическим механизмом того, как именно оно могло включиться и выключиться (очень упрощенно мы этот механизм описали главкой выше).

Вообще, Фред Хойл претерпел много несправедливостей в своей жизни. И отношение к нему научного сообщества не всегда было однозначным. Хойл вообще не походил на строгого кабинетного ученого – ни внешне, ни внутренне. По наружности он напоминал не профессора, а скорее рабочего – этакий простой парень с мясистым носом. В очках, правда… Еще он писал научно-фантастические рассказы, что не считается в кругу ученых серьезным занятием, да и, занимаясь научной деятельностью, допускал порой рискованные шутки, а также высказывал странные идеи.

Родился Хойл в 1915 году в Йоркшире. Его отец торговал шерстью, а сына больше тянуло к звездам. Окончив колледж, парень попал в хорошие руки Поля Дирака – знаменитого физика, открывателя антиматерии, который и вылепил из Хойла настоящего ученого. Хойл почти сразу же после появления на научном горизонте начал потрясать научную общественность всякими интересными штуками. Например, он на пару с коллегой разработал весьма странную теорию стационарной Вселенной. Тут нужно кое-что пояснить.

В начале века, когда Хойл еще только учился в школе, в науке господствовала точка зрения, будто Вселенная вечна и бесконечна. Эта теория была настолько проста и антибожественна, что на ура принималась всеми учеными. Если Вселенная вечна, значит, никакого сотворения не было, и вопрос с Богом можно закрыть. XIX век своими величайшими открытиями во всех науках – физике, химии, биологии, геологии – постепенно приучил ученых к тому, что библейская точка зрения на мир смешна и антинаучна. Сейчас в это мало кто поверит, но еще в начале XIX века большинство ученых-геологов, например, всерьез разделяло теорию Всемирного потопа!.. Привыкнув за сто лет бить Бога и Библию по всем фронтам, ученые были несколько обескуражены, когда на их горизонте появились данные о том, что Вселенная расширяется и, возможно, когда-то она вся была сосредоточена в одной точке, которую и нужно считать началом мира. Начало мира – это что, сотворение, что ли? Нехорошо.

Однако число достоверных астрономических данных о том, что галактики разлетаются прочь друг от друга, год от году росло. Вслед за этим росло и число сторонников теории разлета Вселенной – в основном среди молодых ученых, которым легче принимать новое. А монстры и зубры типа Хойла психологически еще сопротивлялись этому, выдумывая новые объяснения новых фактов в рамках старой парадигмы.

Да, Хойл не был сторонником теории разлета, которая сегодня является главенствующей в астрофизике. Напротив, высмеивая эту теорию, именно он и дал ей смешное с его точки зрения название – теория Большого взрыва (по-английски это звучит действительно забавно – Big Bang). Но название это оказалось столь точным, что закрепилось в науке официально, и сегодня уже никому не кажется смешным.

Между прочим, сомнения Хойла в том, что Вселенная имеет начало, были основаны не на пустом месте: до 1950 года астрофизики сильно занижали расстояния до соседних галактик, и в сочетании с теорией разлета галактик это давало возраст Вселенной меньший, чем возраст Земли. Абсурд! Поэтому Хойл вместе с Бонди и Гол-дом сразу после войны нарисовали другую модель Вселенной, которая хоть и расширяется (спорить с накопленными фактами, говорящими о том, что расстояния между галактиками растут, было невозможно), но при этом не имеет начала. Как же Хойл и его приятели вышли из положения? Они постулировали, что на освободившихся после разбега галактик местах образуется новое вещество, из которого потом вновь появляются звезды и галактики. Причем зарождение вещества происходит с такой скоростью, что средняя плотность Вселенной всегда остается постоянной величиной, несмотря на ее расширение.

Образование вещества из пустоты? Это было уже не просто смело, это было нагло! Это противоречило законам сохранения. И потому было подвергнуто резкой критике. Тем не менее работа Хойла долгое время оставалась одной из самых цитируемых в мире астрофизики, потому что прекрасно описывала все известные на тот момент факты.

Но потом сторонники теории Большого взрыва сделали рискованное предположение, которое должно было или опрокинуть или подтвердить их теорию. Они предсказали, что после Большого взрыва должны были остаться следы – остаточная температура. И в шестидесятые годы эта температура (реликтовое излучение) было найдено! С тех пор интерес к теории стационарной Вселенной пропал сам по себе.

Любопытно, однако, что сам Хойл вовсе не отказался от своей теории, хотя, возможно, и поддерживал ее уже из чисто спортивного интереса. Тем не менее в 2000 году в издательстве Кембриджского университета вышла его книга с оригинальным названием: «Другой подход к космологии: от Статической Вселенной через Большой Взрыв к Реальности». В этой книге старичок реанимировал теорию стационарной Вселенной. Только теперь она у него все время пульсирует.

Однако не нужно думать, что Хойл всю жизнь только и делал, что производил эксцентричные идеи. Нет. Он был добротным теоретиком, весьма уважаемым в научном сообществе. Именно Хойл впервые вплотную занялся вопросом происхождения химических элементов. Известно, что звезды состоят на 75 % из водорода и на 23 % из гелия. Эти вещества – два главных химических элемента Вселенной. И лишь пара процентов остается на остальные полторы сотни элементов периодической таблицы. Почему именно так?

Хойл ответил на этот вопрос. Он взял железный арифмометр и рассчитал всю цепочку реакций, протекающих в недрах звезд, получив прекрасные результаты, обладающие предсказательной силой. Из теории ядерных реакций Хойла следовало, что у углерода-12 должен быть один совершенно неочевидный энергетический уровень, равный 7,82 МэВ. Этот уровень позже был обнаружен экспериментально. Труд Хойла о термоядерном синтезе в недрах звезд считается классическим, у него даже есть свое сокращенное название, как у старого приятеля: физики фамильярно называют эту работу «B2FH». Именно она легла в основу нового раздела космогонии – ядерной астрофизики.

Короче говоря, научные заслуги Хойла несомненны и подтверждены многочисленными наградами. В Англии за научные заслуги Хойлу королевой было присвоено звание рыцаря. А в 1997 году Шведская академия наук наградила его премией Крэфорда «за пионерский вклад в исследование звездной эволюции». Между прочим, эта неизвестная у нас премия лишь чуть-чуть уступает нобелевской по размеру денежного вознаграждения.

Что же касается самой «нобелевки», то здесь произошла весьма странная и некрасивая история. В некоторых книгах можно прочитать, что Хойл – нобелевский лауреат. Это ошибка. Не был он нобелевским лауреатом. И все из-за своего эксцентричного характера!

В 1983 году Нобелевский комитет присудил премию двум астрофизикам – Субраманьяну Чандрасекару и Уильяму Фаулеру «за теоретические и экспериментальные исследования ядерных реакций по формированию химических элементов во Вселенной». Поскольку родоначальником всего этого дела был Хойл, его имя должно было присутствовать в списке награжденных первым. Но его там не было. Почему?

Фаулер, вернувшийся с награждения, тет-а-тет рассказал Хойлу, что у Нобелевского комитета «есть железное правило: если кто-то критиковал их, то не видать ему премии».

– Вообще-то это правда, я не особенно учтиво отзывался о них после истории с премией за пульсары. – признавался Хойл.

Действительно, когда-то горячий Хойл жестко критикнул шведов за неприглядную историю с открытием пульсаров. Звезды-пульсары в 1967 открыла аспирантка Кембриджа Джоселин Белл. А премию за это открытие в 1978 году дали ее начальнику Энтони Хьюишу. Хойл решил, что это несправедливо, о чем опубликовал материал в «Таймс». И поплатился за это.

Умер великий астрофизик совсем недавно – в 2001 году. И на его могиле я бы выбил вместо эпитафии следующие слова самого Хойла: «Чтобы в процессе исследования достигнуть чего-то действительно стоящего, необходимо пойти против мнения коллег».

Хойл часто шел против мнения большинства. И вместе с тем он сам являет собой прекрасный пример того, что новые идеи типа Биг Бэнга порой так и не принимаются старыми конями науки, которые борозды, конечно, не испортят, но и на новую борозду, пропаханную не ими, будут коситься с подозрением.

Ладно, возвращаемся к тому, с чего начали эту главу – к ингредиентам, из которых свалялась наша планета.

Итак, нобелевский недолауреат Хойл бросил догадку о том, что именно магнитное поле небулы сыграло важную роль в формировании планетной системы. Мысль им была брошена на уровне чистой идеи, без детального продумывания механизма включения-выключения поля. Этот механизм был позже проработан другими людьми. Проработан и дополнен очень важными деталями. Кем конкретно? Сделал это советский ученый Владимир Ларин, который гениально свел воедино все, что было известно до него, и расположил это все в логическом порядке. Пустяк, по-вашему?.. Действительно, нарисовав описанную выше картину рождения Солнечной системы, Ларин ничего нового сам не открыл. Но ведь и Менделеев тоже не открыл ни одного элемента! А просто расположил все известные и открытые не им химические элементы в определенном логическом порядке. Но после этого химия стала наукой. А до того была свалкой фактов…

Давайте снова вернемся на 4,5 миллиарда лет назад, к моменту, когда в тех зонах, где скоро появятся планеты, летали пока еще здоровенные рыхлые образования, сделанные из мягких хлопьев слипшегося вещества. А из чего были сделаны хлопья? Дело в том, что в каждой зоне, где формировались планеты, состав химических элементов был разным. Иными словами, ингредиенты всех планет-пирогов нашей Солнечной системы различались. Почему так получилось, ведь первоначальный состав туманности был хаотичным, то есть вполне однородным? Потому что вещество в туманности было частично ионизировано и после сброса протопланетного бублика ему пришлось лететь прочь от протосолнца, продираясь сквозь магнитные силовые линии. А ионизированные частицы, то есть частицы, имеющие электрический заряд, не могут так же свободно, как нейтральные частицы, пересекать решетку магнитных силовых линий. Магнитное поле их тормозит, останавливает.


Рис. 1. Магнитная сепарация вещества по степени его ионизации. Ионы (черные точки) задерживаются силовыми линиями магнитного поля небулы. Нейтральные частицы (кружочки) свободно пролетают через магнитные «прутья»

При этом атомы разных элементов имеют разную склонность к ионизации. Скажем, цезий ионизировать легко – электрон с его внешней оболочки улетает просто от света зажженной спички. А вот атом гелия ионизировать очень сложно, его для этого нужно изрядно побом-бардировать высокоэнергичными фотонами. И потому одни атомы – с высокой склонностью к ионизации – задерживаются около протосолнца магнитным полем, а другие, у которых склонность к ионизации низкая, улетают свободно. Именно поэтому на периферии Солнечной системы крутятся гигантские газовые пузыри (Юпитер, Сатурн и пр.), а вблизи от Солнца – маленькие «металлические» планеты.

Склонность химических элементов к ионизации называют потенциалом ионизации. И если взять табличку с потенциалами ионизации всех элементов таблицы Менделеева, то можно прикинуть, как именно прошла магнитная сепарация вещества, сколько, каких именно элементов и на каком расстоянии от Солнца зависло в разных зонах. Иными словами, из чего потом собрались Земля, Марс, Венера.

Но для начала посмотрим, справедлива ли сама эта идея: действительно ли магнитное поле туманности сыграло решающую роль в сепарации химических элементов. Догадку эту легко проверить, поскольку кое-что о составе разных тел Солнечной системы мы знаем. Что же нам известно?

1. Нам очень хорошо известен состав Солнца.

2. Мы знаем, из чего сделана земная оболочка до глубины примерно 150 км. Пробурилось человечество в глубь планеты пока только на 12 километров, но некоторые обломки пород с гораздо больших глубин у нас есть – их выдавило на поверхность разными геологическими процессами. Мы также знаем, из чего состоит поверхность Луны, поскольку оттуда космическими аппаратами и астронавтами доставлены пробы грунта.

3. Наконец, благодаря метеоритам нам известно, из чего сделан пояс астероидов, который находится за орбитой Марса.

Итак, у нас есть три точки. Три зоны.

Что ж, для начала неплохо. Откладываем на вертикальной оси относительную распространенность разных химических элементов, а на горизонтальной – их потенциалы ионизации. Все очень просто: для того, чтобы убедиться, что количество того или иного химического элемента зависит от его потенциала ионизации, нам нужно получить на графике линию, не параллельную горизонтальной оси.

Посмотрите на графики (рис. 2–4) и убедитесь: распределение элементов в Солнечной системе действительно зависит от потенциала их ионизации. Лишь на одном графике линия параллельна горизонтальной оси – на графике «Земля – Луна». Так и должно быть: обе эти планеты сформировались в одной зоне (на одном расстоянии от Солнца), поэтому их состав совершенно одинаков. Система работает!..

И вот в этот захватывающий момент повествования я вынужден нажать на тормоз и сделать небольшую остановку. Наверняка эти графики, которые обычным читателем воспримутся совершенно спокойно или, вернее всего, будут им равнодушно пролистаны, некоторых геологов, астро– или геофизиков, если таковые попадутся, приведут в состояние легкого шока. И мне понятно, почему.

Графики эти малоизвестны. Потому что ими, строго говоря, некому интересоваться: геологи не интересуются космосом, а данные здесь чисто космохимические. Астрофизики не очень интересуются внутренностями планет, да к тому же опубликованы эти графики были в рамках той науки, которой астрономы не интересуются – в геологической литературе.

И опубликованы не Хойлом. Хотя совершенно непонятно, почему умница Хойл, высказав свое предположение о влиянии магнитного поля небулы на эволюцию планетной системы, не сделал еще один маленький и совершенно очевидный шаг – не сопоставил распространенность разных элементов в Солнечной системе в зависимости от расстояния до светила. Возможно, он был занят более важным делом – писал разоблачительную статью в «Таймс», сочинял очередной научно-фантастический рассказ или просто ковырял в носу. Гениям все простительно.


Рис. 2. Распределение элементов в зависимости от потенциала ионизации. Зона «Метеориты – Земля»


Рис. 3. Распределение элементов в зависимости от потенциала ионизации. Зона «Земля – Солнце»


Рис. 4. Распределение элементов в зависимости от потенциала ионизации. Зона «Луна – Земля»

Вместо него эту нудную работу по скрупулезному сбору материалов и вычерчиванию графиков сделал упомянутый уже Владимир Ларин. Результат его настолько поразил, что Ларин решил поделиться своим открытием с… С кем? С коллегами? Но коллеги его были геологами, их мало интересовал космос. Тогда с астрофизиками!

Ларин позвонил Иосифу Шкловскому…

Широкой публике астрофизик Шкловский памятен тем, что он долгие годы был упорным сторонником множественности цивилизаций в космосе и постоянно порывался искать братьев по разуму. А к концу жизни разочаровался и кардинально переменил свою точку зрения по этому вопросу – стал столь же упорно и горячо отрицать существование иных цивилизаций и считать земную цивилизацию единственной, существующей во Вселенной… Это вообще характерно для творческих и художественно одаренных людей – такие вот эмоционально окрашенные метания. Тем более если вспомнить, что в молодости Шкловский мечтал быть художником-портретистом. А стал блистательным астрономом. Что не мешало ему писать юмористические миниатюры и новеллы.

Природная веселость нет-нет да и проявляла себя в Шкловском самым неожиданным образом. Причем порой сама судьба помогала астрофизику в его хулиганствах. Однажды после знаменитого ХХ съезда нашей горячо любимой партии Шкловского в составе научной делегации судьба занесла в Грузию. И надо ж такому случиться, перед самым вылетом из Москвы он купил и съел на улице пирожок! Пирожок, как это часто бывало в СССР, оказался с тухлецой. И уже в автобусе, пересекающем солнечную Грузию, московский пирожок дал о себе знать.

Сигнал из желудка астрофизик принял и правильно расшифровал. Но поделать ничего не мог: вокруг сидел целый салон его более молодых коллег, а местность, по которой передвигался автобус, не изобиловала ни кустами, ни деревьями, так что просить водителя остановиться означало опозорить себя перед юной научной порослью. И астрофизик, закусив губу, терпел адские спазмы, стараясь удержать внутри то, что отчаянно рвалось на волю. Тянулись мучительные минуты, десятки минут, а автобус потряхивало, и когда-нибудь организм просто не выдержал бы! Это Шкловский отчетливо понимал.

И тут ему в голову от отчаянья пришла гениальная, как тогда показалось, идея: автобус проезжал мимо городка Гори, где находится дом-музей Сталина. «А не заехать ли нам поклониться Вождю?» – осторожно бросил идею в массы Шкловский, рассчитывающий, что уж при музее-то туалет должен быть непременно! Не сразу, но массы его поддержали, и через какое-то время автобус уже подруливал к музею.

Музей был закрыт.

Свет померк в глазах Иосифа Самуиловича. Но тут судьба смилостивилась над ним. Мгновенно, откуда ни возьмись, налетели тучи, и начал сеяться дождь. Несостоявшиеся экскурсанты бросились обратно в автобус, и Шкловский остался во внутреннем дворике музея один. Он мгновенно подскочил к запертой двери мемориального домика, где родился Отец Всех Народов, рывком сбросил штаны и.

Трудно сказать, какое зрелище открылось на следующий день перед работниками музейного комплекса, учитывая, что естественный позыв ученому нечеловеческим усилием воли удалось подавлять и накапливать в течение очень длительного времени.

Но зато потом, по его собственному признанию, астрофизик почувствовал такое облегчение, такую солнечную эйфорию. Причем эйфория эта была не только физического свойства, но и морального, ведь он выразил свое отношение к Лучшему Другу Физкультурников самым адекватным и максимально доходчивым образом.

Но не всегда хулиганства Шкловского были столь безобидны. Порой он отпускал весьма жестокие шутки! Судите сами… Будучи молодым аспирантом, Шкловский в телячьем вагоне, столь характерном для сталинской эпохи, ехал со студентами в эвакуацию. Что такое студенты? Галдящий, хохочущий, орущий, поющий и обильно матерящийся народ. Шкловский, кстати сказать, сам был страшный матерщинник, так что общий ритм на правах старшего задавал он. Однако был во всем этом галдящем вагоне один ботан, который со всеми не матерился и вообще выбивался из ряда хулиганствующих раздолбаев интеллигентскими манерами и хилым видом.

И вот однажды этот ботан встает с нар, подходит к Шкловскому и, обращаясь к нему на «вы» (!), говорит:

– А нет ли у вас почитать чего-нибудь по физике?

От обращения на «вы» и от этой дурацкой просьбы Шкловский поморщился. И тут у него созрел адский план. Дело в том, что перед поездкой он зачем-то швырнул в свой сидор монографию Гайтлера «Квантовая теория излучения». Книжка так и лежала мертвым грузом, поскольку, начав ее читать, Шкловский ничего не понял. Вообще! Дальше предисловия и первого параграфа ему продвинуться так и не удалось, несмотря на то что он был уже аспирантом. А тут к нему подошел зеленый третьекурсник. Сейчас будет потеха!

Шкловский достал книжку и небрежно протянул ботану:

– На, старичок. Книжка простенькая, но познавательная.

Несколько дней долговязого студента было не видно и не слышно. Он тихо-тихо лежал на своих нарах и при свете керосинки смотрел в книгу. Шкловский и забыл об этой суровой шутке, но когда поезд уже подъезжал к конечной станции их путешествия, ботан подошел к разбитному аспиранту и вернул монографию:

– Спасибо. Это очень трудная, но весьма глубокая и интересная книга.


    Ваша оценка произведения:

Популярные книги за неделю