355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Горкин » Энциклопедия «Техника» (с иллюстрациями) » Текст книги (страница 11)
Энциклопедия «Техника» (с иллюстрациями)
  • Текст добавлен: 3 октября 2016, 23:21

Текст книги "Энциклопедия «Техника» (с иллюстрациями)"


Автор книги: Александр Горкин


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 11 (всего у книги 67 страниц) [доступный отрывок для чтения: 24 страниц]

ВОЛÓКНА ПРИРÓДНЫЕ (волокна натуральные), текстильные волокна растительного, животного и минерального происхождения, пригодные для изготовления пряжи, из которой вырабатывают текстильные изделия. Важнейшим природным текстильным волокном является хлопок. Это волокна на семенах хлопчатника. При его созревании плоды (коробочки) раскрываются, и из них собирают хлопок-сырец, который очищается от растительных примесей, обрабатывается и отправляется на прядильную фабрику. Длина волокон хлопка от 10 до 60 мм, толщина 20–22 мкм. Из хлопка получают тонкую и прочную пряжу, идущую на изготовление самых разнообразных тканей. Текстильные волокна получают также из стеблей и листьев растений. Они называются лубяными, бывают тонкие (лён, рами) и грубые (пенька, джут). Из тонких волокон изготавливают различные ткани, из грубых – верёвки, канаты, мешковину.

Природные волокна животного происхождения – шерсть и шёлк. Шерсть является волосяным покровом животных (овец, коз, верблюдов и др.). Шерсть обладает многими ценными свойствами: она легка, плохо проводит тепло, хорошо поглощает влагу. Из шерсти вырабатывают пряжу, ткани, трикотаж, валяльно-войлочные изделия и др. Шёлк – это продукт, выделяемый железами гусениц шелкопрядов. Когда приходит время гусенице превратиться в куколку, а затем стать бабочкой, она выпускает из себя тонкую нить, прикрепляет её к ветке и плетёт из этой нитки защитную оболочку – кокон. Коконы собирают, а образующую их нить разматывают на специальных машинах. При размотке коконов получают шёлк-сырец, из которого вырабатывают кручёный шёлк, применяемый для изготовления тканей, трикотажа, швейных ниток.

Природным волокном минерального происхождения является асбест, называемый в народе горным льном. Из асбеста изготавливают тепловую и электрическую изоляцию, пожарные костюмы и т. п. См. Асбест.

ВОЛÓКНА ХИМИ́ЧЕСКИЕ, объединяют два основных типа волокон – искусственные и синтетические. Искусственные волокна получают из продуктов химической переработки природных полимеров, напр. целлюлозы. Из целлюлозы вырабатывают вискозные, медно-аммиачные, ацетатные и другие волокна. Они идут для изготовления шёлковых и штапельных тканей, корда для шин и многих других бытовых и промышленных изделий. Искусственные волокна дешевле натуральных и по ряду свойств превосходят их.

Синтетические волокна получают из синтетических полимеров. Сырьём для синтетических волокон являются нефть, природный газ, уголь, отходы целлюлозно-бумажной, пищевой и других отраслей промышленности. Эластичность, прочность, стойкость к агрессивным средам и другие ценные качества синтетических волокон сделали их незаменимыми для использования в современной технике. Они идут для изготовления особо прочных канатов и тросов, фильтровальных перегородок, полупроницаемых мембран, многочисленных тканей и многих других изделий.

ВОЛОКÓННО-ОПТИ́ЧЕСКИЕ ЛИ́НИИ СВЯ́ЗИ (ВОЛС), линии оптической связи, в которых передача информации осуществляется с помощью волоконно-оптических элементов. ВОЛС состоит из передающего и приёмного оптических модулей, волоконно-оптических кабелей и волоконно-оптических соединителей. Оптическое волокно – самая совершенная среда для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния, – широко распространённого и недорогого материала, в отличие от меди, используемой в обычных проводах. Оптическое волокно очень компактное и лёгкое, его диаметр всего ок. 100 мкм. Волоконные световоды представляют собой волоконно-оптические жгуты, склеенные или спечённые у концов, защищённые непрозрачной оболочкой и имеющие торцы с полированной поверхностью. Стеклянное волокно – диэлектрик, поэтому при строительстве волоконно-оптических систем связи отдельные оптические волокна не нуждаются в изоляции друг от друга. Долговечность оптического волокна – до 25 лет.

При создании волоконно-оптических линий связи необходимы высоконадёжные электронные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы, а также оптические соединители с малыми оптическими потерями. Поэтому для монтажа таких линий требуется дорогостоящее оборудование. Однако преимущества от применения волоконно-оптических линий связи настолько велики, что, несмотря на перечисленные недостатки оптических волокон, эти линии связи всё шире используются для передачи информации. Скорость передачи данных может быть увеличена за счёт передачи информации сразу в двух направлениях, т. к. световые волны могут распространяться в одном оптическом волокне независимо друг от друга. Это даёт возможность удвоить пропускную способность оптического канала связи.

Волоконно-оптические линии связи устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. К таким линиям связи невозможно подключиться без нарушения целостности линии. Впервые передача сигналов по оптическому волокну была осуществлена в 1975 г. Ныне быстрыми темпами развиваются системы дальней оптической связи на расстояния в многие тысячи километров. Успешно эксплуатируются трансатлантические линии связи США – Европа, Тихоокеанская линия США – Гавайские острова – Япония. Ведутся работы по завершению строительства глобальной волоконно-оптической линии связи Япония – Сингапур – Индия – Саудовская Аравия – Египет – Италия. В России компания ТрансТелеКом создала волоконно-оптическую сеть связи протяжённостью более 36 000 км. Она дублирована спутниковыми каналами связи. В кон. 2001 г. создана единая магистральная цифровая сеть связи. Она обеспечивает услуги междугородной и международной телефонной связи, Интернета, кабельного телевидения в 56 из 89 регионов России, где проживает 85–90 % населения.

ВОЛОКÓННО-ОПТИ́ЧЕСКИЙ КÁБЕЛЬ,один или несколько волоконных световодов с упрочняющими элементами, заключёнными в защитную оболочку. Волоконно-оптические кабели разделяют по числу волоконных световодов (одножильные и многожильные), а по функциональному назначению – для передачи энергии оптического излучения (осветительные, длиной несколько метров) и информационных сигналов (длиной в сотни и тысячи километров). Наибольшее распространение получили волоконно-оптические кабели для передачи информационных сигналов по междугородным и трансконтинентальным волоконно-оптическим линиям связи. Характеризуется невосприимчивостью к различного рода помехам и низкими потерями, что позволяет доводить расстояния между передающим и приёмным устройствами до 400–800 км.

ВОЛОЧИ́ЛЬНЫЙ СТАН, машина для изготовления металлической проволоки и труб малого диаметра. Волочильный стан состоит из рабочего инструмента – волоки – и тянущего устройства, сообщающего обрабатываемому металлу движение через волоку. В зависимости от принципа работы тянущего устройства различают волочильные станы с прямолинейным движением обрабатываемого металла и станы с наматыванием обрабатываемого металла (барабанные). Первые применяются для получения труб, вторые – для изготовления проволоки.

ВОЛЬТМÉТР, прибор для измерения напряжения в электрических цепях постоянного и переменного тока. Вольтметр включается параллельно участку цепи, на котором измеряется напряжение. Шкала вольтметра градуируется в мкВ, мВ, В или кВ. Для расширения пределов измерений используют добавочные резисторы (сопротивления), делители напряжения и измерительные трансформаторы напряжения. Вольтметры бывают аналоговые (со стрелочным или световым указателем) и цифровые (см. Цифровой измерительный прибор). В цепях постоянного тока применяют магнитоэлектрические вольтметры, в цепях переменного тока – электромагнитные, а также выпрямительные, термоэлектрические и электронные вольтметры. Электронные вольтметры аналогового типа – это приборы, состоящие из электронных блоков (выпрямителя, усилителя) и измерительного механизма постоянного тока магнитоэлектрического измерительного прибора. Различают электронные вольтметры для измерений постоянного и переменного напряжения и универсальные. К электронным вольтметрам относятся также импульсные вольтметры, предназначенные для измерения амплитуд электрических импульсов.

а)

б)

Вольтметр:

а – переносной лабораторный вольтметр; б – переносной многопредельный ламповый вольтметр с непосредственным отсчётом

ВÓЛЬТОВА ДУГÁ, то же, что дуга электрическая.

ВÓРОТ, простейшее грузоподъёмное устройство с ручным приводом. Состоит из барабана, вращаемого рукояткой, и каната (цепи), навиваемого на барабан. Свободный конец каната снабжён крюком, скобой или клещами для перемещения штучных грузов, бадьёй либо другой ёмкостью – для сыпучих или жидких материалов. Ворот – одно из древнейших изобретений человека. Подобные устройства использовали строители египетских пирамид. Широко был распространён в сельской местности для подъёма воды из колодца. Наибольший выигрыш в силе даёт дифференциальный ворот со ступенчатым барабаном.

Ворот

ВОРОТÓК, см. в ст. Инструменты для нарезания резьбы.

«ВОСТÓК», серия одноместных космических кораблей для автономного полёта человека по околоземной орбите в космическом пространстве. Космические корабли этой серии созданы под непосредственным руководством С. П. Королёва.

На космическом корабле «Восток» изучалось воздействие условий космического полёта на состояние и работоспособность космонавта, его возможность управления системами корабля в условиях невесомости. Исследовалась способность принимать и усваивать пищу, сохранять психофизические особенности поведения, восприятия окружающей обстановки и т. п. Масса корабля «Восток» – 4730 кг, длина – 4.4 м, наибольший диаметр – 2.43 м. Состоит из спускаемого аппарата и приборно-агрегатного отсека, механически и электрически соединённых между собой. Герметичный спускаемый аппарат предназначен для размещения космонавта и оборудован системой жизнеобеспечения, пультами и органами управления кораблём, системой радиосвязи и телевидения, системой телеметрического контроля состояния космонавта и техники и т. п. Для предотвращения повреждений от высоких термодинамических нагрузок при прохождении плотных слоёв атмосферы аппарат покрывался специальной теплозащитной обмазкой. Спускаемый аппарат не имел системы мягкой посадки, и космонавт при возвращении на Землю на высоте ок. 7 км катапультировался и спускался на парашюте. Спускаемый аппарат, уже без космонавта, приземлялся на парашюте. В приборно-агрегатном отсеке находилось оборудование, не требующее обслуживания. На приборном отсеке размещалась тормозная двигательная установка. После завершения программы полёта и процесса торможения приборный отсек отделялся от спускаемого аппарата и сгорал в плотных слоях атмосферы. До пилотируемого полёта было совершено пять испытательных полётов с животными и манекенами (1960—61).

Первый в мире полёт человека в космическое пространство был совершён 12 апреля 1961 г. Ю. А. Гагариным на космическом корабле «Восток-1». Он продолжался 1 ч 48 мин и состоял из одного витка вокруг Земли, во время которого была проверена принципиальная возможность полёта человека в космос. На космическом корабле «Восток-2»

Г. С. Титов (6–7 августа 1961 г., 25 ч 18 мин) показал возможность приёма пищи, сна в условиях невесомости, а также выполнения рабочих функций при кино – и фотосъёмках, управлении кораблём и т. п. При совместном полёте на космических кораблях «Восток-3» (А. Г. Николаев, 11–15 августа 1962 г., 94 ч 22 мин) и «Восток-4» (П. Р. Попович, 12–15 августа 1962 г., 70 ч 57 мин) космонавты впервые освободились от кресел, свободно плавали в невесомости, установили радиосвязь между собой, проводили медико-биологические и другие эксперименты. Впервые были проведены телевизионные репортажи с борта космического корабля, которые транслировались по телевидению. Самый длительный полёт на космическом корабле этой серии – «Восток-5» (119 ч 06 мин) совершил В. Ф. Быковский 14–19 июня 1963 г., во время которого была проведена расширенная программа медико-биологических исследований и других экспериментов. На «Востоке-6» (16–19 июня 1963 г., 70 ч 50 мин) совершила полёт первая в мире женщина-космонавт В. В. Терешкова.

Ракетаноситель «Восток» с космическим кораблём «Восток-1»

Космический корабль «Восток»

ВРÉМЯ РЕÁКЦИИ ЧЕЛОВÉКА, интервал времени от начала воздействия на организм какого-либо раздражителя до ответной реакции организма. Состоит из трёх фаз: время прохождения нервных импульсов от рецепторов до коры головного мозга; время, необходимое для восприятия нервных импульсов головным мозгом и организации ответной реакции в центральной нервной системе; время ответного действия организма. Время реакции зависит от типа раздражителя (звук, свет, температура, давление и т. д.) и его интенсивности, тренированности организма на восприятие этого раздражителя, его ожидаемости и др. Например, для распознавания сигнала светофора требуется 0.3–0.4 с, время реакции на ожог 0.15—0.2 с. Время реакции человека имеет решающее значение при определении возможности его работы лётчиком, оператором, машинистом и т. д.

ВЫКЛЮЧÁТЕЛЬ ЭЛЕКТРИ́ЧЕСКИЙ, устройство для включения и отключения электрических светильников, электронагревательных приборов, трансформаторов, двигателей, линий электропередачи и т. д. Делятся на электрические выключатели низкого (до 1000 В) и высокого (св. 1000 В) напряжения. Электрический выключатель состоит из контактной системы (подвижные и неподвижные контакты) и привода (ручного, пружинного, электромагнитного, пневматического). Для отключения токов в сотни и тысячи ампер электрические выключатели снабжаются устройствами для гашения электрической дуги.

Выключатели низкого напряжения подразделяют на бытовые и промышленные. Первые служат для включения и отключения бытовых электроприборов и устройств переменного тока (50 Гц) при напряжении до 220 В и силе тока до 10 А. Бытовые выключатели изготовляют с ручным, значительно реже – с автоматическим управлением, гл. обр. для защиты от перегрузки (по току) и разрыванию цепи при коротком замыкании. Часто бытовые выключатели совмещают в одно устройство с фотореле (для автоматического включения или выключения светильников в зависимости от освещённости), с таймером (для программирования момента включения и выключения бытовых электроприборов) или светорегулятором (для плавного регулирования яркости свечения ламп). Выключатели освещения могут иметь одну, две или три клавиши. В одноклавишных выключателях размыкается или замыкается одна пара контактов. В двух – и трёхклавишных выключателях каждая пара контактов работает как отдельный выключатель, независимо от того, как ведут себя остальные пары контактов. Как правило, один контакт у них является общим. Такие выключатели служат для раздельного включения ламп в светильнике.

Промышленные электрические выключатели изготовляют с ручным и автоматическим управлением. Последние могут иметь также защиту от понижения напряжения: если напряжение опускается ниже допустимого значения, происходит автоматическое отключение. Распространены полупроводниковые электрические выключатели с дистанционным управлением от компьютера.

Электрические выключатели высокого напряжения (высоковольтные выключатели) предназначены для ручного или дистанционного оперативного включения и отключения устройств высокого напряжения при нормальных режимах и для автоматического выключения этих установок в аварийных режимах при токах перегрузки и токах короткого замыкания.

ВЫПРЯМИ́ТЕЛЬ ЭЛЕКТРИ́ЧЕСКИЙ, устройство для преобразования переменного электрического тока в постоянный. Большинство мощных источников электрической энергии (напр., электрические генераторы на электростанциях) вырабатывают переменный ток. Однако многие электрические устройства на городском и железнодорожном транспорте, в химической промышленности, в цветной металлургии, в быту и т. д. работают на постоянном токе различного напряжения. В простейшем случае переменный ток выпрямляется электрическим вентилем, пропускающим ток (напр., синусоидальный) только в одном направлении. В однофазных электрических цепях используют однополупериодные, двухполупериодные с нулевым выводом и мостовые схемы электрических выпрямителей. На рис. 1 приведена схема однополупериодного выпрямителя однофазного тока. Напряжение U₁, обычно синусоидальное, от источника переменного тока через трансформатор Тр подаётся на вентиль В. Ток J в нагрузке Rн течёт только при положительной полярности подводимого напряжения, т. е. при открытом состоянии вентиля В. Конденсатор С заряжается положительными полуволнами пульсирующего тока, а в паузах, соответствующих по времени отрицательным полуволнам, разряжается на нагрузку. Таким образом, пульсирующий ток сглаживается, усредняется.

В схеме двухполупериодного выпрямителя (рис. 2) применяют трансформатор со средней точкой во вторичной обмотке. Благодаря такому соединению обмотки с вентилями выпрямленный ток формируется из обеих полуволн тока. Частота пульсаций выпрямленного тока при этом возрастает в 2 раза по сравнению с однополупериодным выпрямителем, что облегчает сглаживание тока.

Схема мостового выпрямителя (рис. 3) также двухполупериодная, но вторичная обмотка трансформатора выполнена без средней точки и имеет в 2 раза меньшее количество витков по сравнению со вторичной обмоткой трансформатора. Указанные схемы выпрямителей применяют обычно в системах питания устройств, у которых потребляемая мощность не превышает нескольких киловатт (бытовые электронные приборы, некоторые устройства автоматики и телемеханики и др.), и лишь в отдельных случаях для питания мощных (до 1000 кВт) устройств (напр., двигателей электровозов).

1)

2)

3)

Схемы выпрямителей однофазного тока:

1 – однополупериодная; 2 – двухполупериодная; 3 – мостовая

ВЫСÓКАЯ ПЕЧÁТЬ, способ получения полиграфического изображения на бумаге (или ином материале) с использованием печатных форм, на которых печатающие элементы выступают над пробельными (непечатающими) элементами. Текст и иллюстрации готовят раздельно и объединяют обычно при составлении печатной формы, используемой многократно. Иллюстрационные формы изготавливают в цинкографии травлением или гравированием; текстовые – набором. В высокой печати часто приходится использовать дубликаты печатных форм – копии с оригинальных форм, что обусловлено особенностями способа: повышенным давлением при печати, вызывающим быстрый износ печатных элементов при больших тиражах. Высокая печать используется для печатания текстовых изданий (книги, газеты, брошюры и пр.).

1)

2)

3)

Схема получения оттиска при высокой печати:

1 – форма; 2 – форма с краской; 3 – бумага с оттиском краски;

а – печатающие участки; б – непечатающий (углублённый) участок; в – бумага; г – краска

ВЫСОКОВÓЛЬТНЫЙ ВЫКЛЮЧÁТЕЛЬ, выключатель электрический для ручного или дистанционного оперативного включения и отключения устройств высокого напряжения при нормальных режимах и для автоматического выключения этих установок в аварийных режимах при токах перегрузки и токах короткого замыкания. Для гашения электрической дуги, возникающей при размыкании цепи с током, в высоковольтных выключателях используются дугогасительные устройства.

По виду дугогасительного устройства и среде, в которой происходит гашение дуги, различают масляные, элегазовые, воздушные, вакуумные, газогенерирующие и электромагнитные выключатели. В масляных выключателях дуга гасится с помощью потока газа, образующегося в результате разложения трансформаторного масла, в котором расположены контакты выключателя. Масляные выключатели входят в состав распределительных устройств электрических станций и подстанций. В воздушных выключателях дуга гасится сжатым воздухом; воздушные выключатели выпускаются на напряжения до 1150 В. В вакуумных выключателях дуга гасится в высоком вакууме (1–0.1 МПа); используются такие выключатели при частых отключениях нагрузки. В элегазовых выключателях гасящей средой является гексафторид серы – элегаз; рабочее напряжение таких выключателей несколько киловатт. В газогенерирующих выключателях дуга гасится потоком газов, образующихся под воздействием дуги из газогенерирующих материалов (фибры, органического стекла и др.); применяется гл. обр. на напряжения 6—15 кВ при силе тока до 600 А. В электромагнитных выключателях дуга затягивается в камеру (где она остывает и гаснет) мощным магнитным полем, создаваемым отключаемым током, протекающим по обмоткам электромагнитов; применяется на напряжения 3—10 кВ.

ВЫСОКОСКОРОСТНЫ́Е ЖЕЛÉЗНЫЕ ДОРÓГИ, магистрали, по которым поезда движутся со скоростью не ниже 200 км/ч. Вся история развития железнодорожного транспорта связана со стремлением обеспечить максимальные скорости движения, минимальное время нахождения пассажиров и грузов в пути, увеличение пропускной способности дорог. Для высокоскоростного транспорта требуется создание специальной инфраструктуры – искусственных сооружений, рельсового пути, систем управления движением, устройств сигнализации, информации и связи, обеспечивающих необходимую безопасность пассажиров и сохранность грузов. Осуществляется высокоскоростное движение либо колёсным подвижным составом, передвигающимся по традиционному рельсовому пути, либо вагонами, не имеющими непосредственного контакта при движении с путепроводной эстакадой (т. н. левитирующий транспорт). В последнем случае для создания тяги используется специальный линейный электродвигатель в сочетании с магнитным подвесом.

Рекордную скорость 140 км/ч впервые развил в 1905 г. локомотив с паровой тягой немецкой фирмы «Сименс»; через некоторое время он же достиг скорости 200 км/ч. В 1973 г. в Великобритании на локомотиве с дизельным двигателем достигнута скорость 230 км/ч. В нач. 80-х гг. на дорогах Европы появился французский суперэкспресс ТGV (Trains Grande Vitesse – вагон с высокой скоростью), развивавший скорость 380 км/ч; в 1990 г. он показал рекордную скорость – 515.3 км/ч. Однако наиболее приемлемой для эксплуатации суперэкспресса является скорость 300 км/ч. С такой скоростью движутся поезда в различных регионах Западной Европы. Наиболее развито скоростное движение во Франции, Германии, Испании, Италии – странах, связанных единой сетью высокоскоростных железных дорог. В Японии, имеющей протяжённую сеть высокоскоростных линий, объединяющих всю территорию страны, рабочая скорость движения на большинстве участков не превышает 210–240 км/ч (в тоннелях до 270 км/ч). В России создание высокоскоростного железнодорожного транспорта началось в кон. 1980-х гг. На первой скоростной линии между Москвой и Ленинградом (Санкт-Петербургом) в 1989 г. началась эксплуатация электропоезда ЭР-200, развивающего на отдельных участках скорость 200 км/ч. В кон. 90-х гг. разработан и построен скоростной электропоезд, рассчитанный на более высокие скорости для эксплуатации на том же направлении.

Высокоскоростной электропоезд

ВЫСОТОМÉР (альтиметр), прибор для определения высоты полёта летательного аппарата. Различают барометрические высотомеры и радиовысотомеры. Принцип действия барометрических высотомеров основан на однозначной зависимости атмосферного давления от высоты полёта летательного аппарата. Конструкция такого высотомера подобна конструкции барометра-анероида, но его отсчётная шкала проградуирована в метрах и километрах. По показаниям прибора определяют как абсолютную высоту (высоту относительно условного уровня, на котором атмосферное давление равно 760 мм рт. ст. – уровень Мирового океана), так и относительную (высоту относительно места вылета). Барометрические высотомеры применимы до высоты 30 км.

В радио высотомерах высота полёта измеряется при помощи радиоволн. В полёте радиовысотомер посылает радиоволны перпендикулярно земной поверхности и измеряет время между моментами излучения радиоволн и их приёма после отражения от земли (воды). Зная время и скорость распространения радиоволн (~ 300 000 км/с), легко определить расстояние, пройденное радиоволнами за это время, т. е. удвоенное расстояние от летательного аппарата до земной поверхности.

ВЫЧИСЛИ́ТЕЛЬНАЯ МАШИ́НА, устройство или комплекс устройств для механизации и автоматизации процессов вычислений и обработки информации. Первые устройства механизированного счёта состояли из зубчатых колёс, реек, рычагов и т. п. деталей, отсюда их название – вычислительные машины. Кним относятся арифмометр В. Шиккарда (1623 г., Германия), счётная машина Б. Паскаля (1641 г., Франция), арифмометры К. Томаса (1820 г., Франция) и В. Т. Однера (1890 г., Россия). На смену механическим арифмометрам пришли электромеханические счётные машины: табулятор Г. Галлерита (1887 г., США), цифровые вычислители Ц-З К. Цузе (1941 г., Германия), МАРК-I и МАРК-II Г. Айкена (1944—47 гг., США) и др. В 1946 г. в США создана первая электронная вычислительная машина (ЭВМ) – ЭНИАК; первая отечественная ЭВМ – МЭСМ построена в 1950 г. под руководством академика С. А. Лебедева. Термин «вычислительная машина» применительно к ЭВМ сохранился лишь в силу исторической преемственности; по существу ЭВМ – это комплекс (система) сложнейших электронных устройств, обеспечивающих переработку, хранение, передачу и отображение информации, представленной в цифровой, буквенной, изобразительной или речевой форме либо в виде непрерывно изменяющихся физических величин. Иногда термин «вычислительная машина» применяют также к устройствам оптической обработки информации – оптическим процессорам, называя их по аналогии с ЭВМ оптическими вычислительными машинами.

ВЫЧИСЛИ́ТЕЛЬНАЯ ТÉХНИКА, 1) совокупность технических и математических средств, методов и приёмов, используемых для механизации и автоматизации процессов вычислений и обработки информации. Основу технических средств современной вычислительной техники составляют электронные вычислительные машины (ЭВМ, компьютеры), устройства ввода, вывода, представления и передачи данных (сканеры, принтеры, модемы, мониторы, плоттеры, клавиатуры, накопители на магнитных лентах и дисках и т. д.), ноутбуки, микрокалькуляторы, электронные записные книжки и пр. К математическим средствам относятся разнообразные программы (в т. ч. операционные системы, программы технического обслуживания ЭВМ), языки программирования, инструкции, протоколы и т. д.

Первые примитивные устройства (абак, китайские счёты и т. п.) для механизации вычислений площадей земельных участков, торговых расчётов и пр. появились за сотни лет до н. э. Вычислительные устройства, такие, как, напр., шкала Непера, логарифмическая линейка, арифмометр В. Шиккарда, счётная машина Б. Паскаля, были известны уже в 17 в. На смену им в 18–19 вв. пришли планиметры Дж. Германа и Дж. Амслера, арифмометр В. Т. Однера и др. В 1833 г. английский учёный Ч. Беббидж разработал проект «аналитической машины» – гигантского арифмометра с программным управлением, арифметическим и запоминающим устройствами; однако осуществить свой проект ему не удалось гл. обр. из-за недостаточной технической базы. Развитие вычислительной техники в кон. 19 – нач. 20 в. связано в основном с созданием аналоговых вычислительных машин (АВМ). Лишь в 1944 г. в США была построена первая цифровая вычислительная машина (ЦВМ) с программным управлением МАРК-I на электромагнитных реле.

Счётная машина Б. Паскаля

Решающим событием в развитии вычислительной техники стало создание в 1946 г. в США электронной вычислительной машины (ЭВМ) – ЭНИАК. Первая отечественная ЭВМ – МЭСМ была построена в 1950 г. под руководством академика С. А. Лебедева, а спустя три года появилась БЭСМ – предшественница серии отечественных цифровых ЭВМ: «Минск», «Урал», «Днепр», «Мир», «Раздан» и др. С развитием вакуумной, а затем полупроводниковой электроники и микроэлектроники изменялась элементная база ЭВМ и других технических средств вычислительной техники, разрабатывались новые логические схемы устройств. Одновременно создавались новые, всё более сложные программы, совершенствовались языки программирования и методы управления вычислительным процессом. За каких-то 40 лет существования производительность электронных вычислительных машин возросла с нескольких тысяч до десятков миллиардов операций за 1 секунду.

Ноутбук

Новый, поистине революционный этап в развитии вычислительной техники ознаменовался созданием в 1970-х гг. персональных компьютеров. С появлением персональных компьютеров, работающих в режиме дружественного диалога с пользователем, вычислительная техника стала доступна широкому кругу пользователей – от школьников до специалистов в области математики и программирования, от кассира в магазине до конструктора космических систем, от лаборанта до учёного-атомщика. К кон. 2000 г. вычислительная техника из инструмента для математических расчётов превратилась в универсальное средство обработки информации, располагающее совершенным программным обеспечением, способное решать самые сложные задачи практически во всех сферах человеческой деятельности – экономике, энергетике, промышленности, научных исследованиях и др.

2) Отрасль техники, занимающаяся разработкой, изготовлением и эксплуатацией вычислительных машин, устройств и приборов.


    Ваша оценка произведения:

Популярные книги за неделю