355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Плонский » Пьезоэлектричество » Текст книги (страница 1)
Пьезоэлектричество
  • Текст добавлен: 7 марта 2018, 11:30

Текст книги "Пьезоэлектричество"


Автор книги: Александр Плонский



сообщить о нарушении

Текущая страница: 1 (всего у книги 5 страниц)

Александр Плонский
ПЬЕЗОЭЛЕКТРИЧЕСТВО


Введение

В этой книге рассказывается о природе и практическом применении одного из интереснейших явлений природы, которое получило название пьезоэлектрического эффекта.

Это явление было впервые обнаружено ещё в конце прошлого века, но в течение десятков лет его считали своеобразным научным «курьёзом», не имеющим какой-либо практической ценности. Однако впоследствии оказалось, что такая оценка была неверной. Умелое использование пьезоэлектрического эффекта позволило решить целый ряд научных и технических проблем. В наши дни приборы, построенные на использовании пьезоэлектричества, применяются во многих отраслях промышленности и народного хозяйства, таких, как авиация, железнодорожный и автомобильный транспорт, машиностроение, радиотехника, электротехника, акустика, астрономия, биология, гидрология, медицина, метеорология и т. д.

На примере пьезоэлектричества видно, что, каким бы на первый взгляд отвлечённым ни казалось научное открытие, оно находит своё практическое применение.

Чистой науки, о которой лицемерно твердят некоторые буржуазные учёные, нет. Наука плодотворна лишь тогда, когда она неразрывно связана с практикой. Наша материалистическая наука, вооружённая передовым марксистско-ленинским мировоззрением, носит целеустремлённый характер, имеет своей прямой целью дальнейшее укрепление народного хозяйства нашей Родины.

В этой небольшой книге рассказывается о пьезоэлектричестве. Чтобы понять его природу, необходимо предварительно познакомиться со строением и свойствами окружающих нас предметов.

1. Строение вещества

Нас окружает множество различных тел. Любое из них – микроскопическая пылинка и гигантский утёс, вода и воздух, металл и стекло – состоит из вещества. Вещество построено из чрезвычайно мелких частичек – атомов различных химических элементов. В большинстве веществ атомы объединяются между собой в более крупные частицы – молекулы. Размеры атомов ничтожно малы: они не превышают нескольких стомиллионных долей сантиметра.

Учёные установили, что атомы имеют сложное строение и состоят из мельчайших электрически заряженных частиц. В центре любого атома находится положительно заряженное ядро. Вокруг ядра вращаются отрицательно заряженные частички – электроны, образующие электронную оболочку атома. Диаметр этой оболочки приблизительно в 100 000 раз больше диаметра ядра.

В своём обычном состоянии атом электрически нейтрален. Это значит, что положительный заряд ядра уравновешен отрицательными зарядами электронов.

Атомы различных химических элементов (например, атомы водорода, натрия, кремния и т. д.) отличаются друг от друга числом электронов, а также весом и зарядом ядра. На рис. 1 схематически показана структура некоторых атомов.

Рис. 1. Упрощённая схема строения атомов водорода, углерода и серы.

Если из электронной оболочки атома каким-нибудь образом удалить один или несколько электронов, то равновесие положительных и отрицательных зарядов в атоме нарушится, в результате чего он уже не будет электрически нейтрален. Поскольку в этом случае положительный заряд больше отрицательного, атом в целом окажется заряженным положительно. Такой атом называют положительным ионом. Если, напротив, добавить в электронную оболочку атома один или несколько электронов, то он приобретёт отрицательный заряд и превратится в отрицательный ион. Чтобы ионизовать атом, необходимо затратить работу на преодоление связывающих его электрических сил. Это может быть достигнуто многими способами, например, путём нагревания.

Атомы и молекулы располагаются либо в определённом, строго закономерном, порядке, либо беспорядочно.

Все твёрдые тела, то есть тела, способные сохранять форму, по их строению можно разбить на две группы.

Одни тела состоят из частиц, в которых атомы и молекулы размещены геометрически правильно, стройными рядами. Такие тела называют кристаллическими. Это название произошло от древнегреческого слова «кристаллос», обозначавшего лёд, а также и прозрачный бесцветный кварц (горный хрусталь), который ошибочно считался окаменелым льдом. В группу кристаллических тел помимо кварца входят металлы, лёд, слюда и др.

Если нагревать какое-нибудь кристаллическое тело, например кусочек олова, то оно расплавится при вполне определённой температуре, характерной для данного вещества. В момент плавления геометрически правильное расположение атомов нарушается.

Телам, относящимся к другой группе, таким как стекло, смола или столярный клей, всегда свойственно беспорядочное размещение атомов. Подобные тела называют аморфными. В отличие от кристаллических они не имеют определённой температуры плавления и затвердевания, при нагреве постепенно размягчаются, утрачивают форму и переходят в жидкое состояние. Поскольку при этом характер расположения атомов в веществе остаётся прежним, то ясно, что аморфные тела не являются истинно твёрдыми, а относятся скорее к переохлаждённым жидкостям.

Характер пространственного расположения атомов как в кристаллических, так и в аморфных телах можно установить с помощью рентгеновских лучей, которые широко применяются для просвечивания человеческого организма.

2. Кристаллы

Кристаллическим веществам свойственно вполне определённое расположение атомов и молекул, которое называют кристаллической решёткой.

Взгляните на рис. 2. На нём изображена кристаллическая решётка поваренной соли. Ионы натрия и хлора, из которых состоит поваренная соль, размещены как бы по углам кубов, соприкасающихся своими гранями.

Рис. 2. Расположение ионов в кристалле поваренной соли.

Восемь таких кубиков образуют элементарную ячейку поваренной соли. Множество элементарных ячеек в совокупности даёт кристаллическую решётку.

Один и тот же химический элемент может образовать разные вещества с различными формами кристаллических решёток. При этом такие вещества, имея одинаковый химический состав, нередко обладают совершенно противоположными свойствами. Так, например, алмаз и графит состоят из атомов углерода, но характер расположения атомов в этих веществах различен. Поэтому они по своим физическим свойствам совсем непохожи друг на друга. Графит мягок, имеет чёрную матовую окраску. Алмаз же прозрачен и так твёрд, что им режут стекло.

Кристаллические тела бывают двух видов. Одни из них, имеющие от природы форму многогранников – кубов, пирамид и т. п., – получили название монокристаллов (или просто кристаллов). Другие кристаллические тела не имеют многогранной формы, но если рассмотреть их под микроскопом, то можно заметить, что они состоят из множества мелких, сросшихся между собой монокристаликов. Такие тела называют поликристаллическими.

Большинство горных пород, а также все металлы, относятся к поликристаллическим телам.

Размеры монокристаллов бывают различными. У поваренной соли и сахарного песка кристаллы не больше булавочной головки, кристаллы кварца по величине иногда достигают человеческого роста (рис. 3).

Рис. 3. Такой величины достигают кристаллы кварца.

Распространённость кристаллических веществ в природе чрезвычайно широка. Драгоценный изумруд и обыкновенная слюда, огромные глыбы льда и крошечные снежинки относятся к миру кристаллов. Лишь очень немногие твёрдые тела имеют аморфную структуру, но и они с течением времени обычно начинают кристаллизоваться.

Так, можно наблюдать помутнение стекла. Это происходит в результате образования в стекле кристаликов.

Если сравнить между собой кристаллы разных веществ, то легко заметить, что их форма различна. Например, кристалл поваренной соли имеет форму куба (рис. 4, а). Кварц кристаллизуется в виде заострённых на концах шестигранных призм (рис. 4, б).

Рис. 4. Различные формы кристаллов: а) поваренная соль, б) горный хрусталь (кварц), в) магнетит, г) корунд, д) берилл, е) топаз, ж) лейцит.

Для сравнения на рис. 4 показаны также кристаллы различных минералов[1]1
  Минерал – химическое соединение, образовавшееся естественным путём.


[Закрыть]
.

Внешняя форма кристалла зависит от его внутреннего строения – от формы кристаллической решётки и свойств среды, в которой он образуется.

Форма природных кристаллов часто бывает неправильной. Это объясняется тем, что обычно кристаллы развиваются неравномерно, и одни грани вырастают быстрее, а другие медленнее. Однако всем кристаллам одного какого-либо вещества присуще общее свойство: независимо от формы углы между одними и теми же гранями в таких кристаллах строго постоянны. Это свойство кристаллов получило название закона постоянства углов. Закон постоянства углов – один из важнейших законов науки о кристаллах – кристаллографии, основоположником которой является русский учёный Евграф Степанович Фёдоров.

Евграф Степанович Фёдоров.

Как же возникают и развиваются кристаллы?

Рассмотрим образование кристаллической решётки поваренной соли. Из рис. 2 видно, что ионы натрия и хлора в кристаллической решётке расположены по углам кубов не произвольно, а чередуясь через один, в строгом шахматном порядке. Такая закономерность расположения ионов не случайна. В природных условиях поваренная соль кристаллизуется из так называемого маточного рассола соляных озёр. В водном растворе частицы натрия и хлора существуют как в виде разрозненных ионов, так и в составе молекул поваренной соли. Каждая такая молекула состоит из положительного иона натрия и отрицательного иона хлора. Возможны три случая взаимного расположения двух молекул поваренной соли (рис. 5).

Известно, что под воздействием электрических сил разноимённо заряженные тела притягиваются друг к другу, а одноимённо заряженные – взаимно отталкиваются. Поэтому в одном случае (рис. 5, а) молекулы отталкиваются, в другом (рис. 5, б) – притягиваются и в третьем (рис. 5, в) – стремятся повернуться так, чтобы занять устойчивое положение (рис. 5, б).

Рис. 5. Возможные взаимные положения двух молекул поваренной соли.

Именно по этой причине молекулы поваренной соли, а также и разрозненные ионы хлора и натрия при кристаллизации группируются между собой, располагаясь таким образом, чтобы расстояния между одноимёнными ионами были как можно большими, а между разноимёнными – как можно меньшими, то есть в шахматном порядке.

Так возникает зародыш кристалла. Постепенно его кристаллическая решётка, образованная чередующимися ионами натрия и хлора, пополняется всё новыми и новыми частицами вещества. Кристалл растёт.

Чтобы представить себе, как происходит рост кристалла, достаточно вспомнить пчелиные соты. Сооружая их, пчёлы отстраивают ячейку за ячейкой, слой за слоем, как это показано на рис. 6.

Рис. 6. Пчелиные соты.

Приблизительно так же растёт и кристалл. Новые слои вещества откладываются на гранях зародыша так, что грани передвигаются параллельно самим себе (рис. 7).

Рис. 7. Так передвигаются грани кристалла при его росте.

Если зародыш имел форму куба, то такую же форму будет иметь и выросший кристалл, при условии, что грани развивались равномерно.

Кристаллы могут образовываться из жидкого, твёрдого и газообразного состояний вещества. Так, снежинки – это кристалики льда, образовавшиеся из парообразного состояния воды. Кристаллизация стекла – пример образования кристаллов из твёрдого состояния.

Но проще всего получить кристалл из раствора.

Растворяя в стакане воды какое-либо растворимое вещество, например ту же поваренную соль, легко заметить, что сначала соль растворяется легко и быстро, затем всё медленнее, и, наконец, перестаёт растворяться. Следовательно, в любом ограниченном объёме воды – в стакане, ведре, бочке и т. д. – можно растворить лишь вполне определённое количество соли. Чем больше объём воды, тем большее количество соли удаётся растворить в ней. Вся же остальная соль, сколько бы её ни подсыпали в раствор, не растворившись, выпадет на дно сосуда в виде осадка. Раствор, содержащий наибольшее возможное количество растворимого вещества, называется насыщенным.

Растворимость соли зависит от температуры. В горячей воде можно растворить гораздо больше вещества, чем в холодной.

Проделайте такой опыт. Растворите 200 граммов белых (алюминиевых) квасцов в таком количестве горячей воды, чтобы на дне сосуда оставалось немного осадка. Затем остудите раствор до комнатной температуры. Поскольку растворимость квасцов при понижении температуры уменьшается, количество осадка увеличится. Вылейте полученный насыщенный раствор в какой-либо сосуд с широким дном и низкими стенками, например, в тарелку. Такая форма сосуда необходима для того, чтобы раствор мог свободно испаряться. При испарении количество воды в сосуде будет постепенно уменьшаться, поэтому уже на следующий день на дне тарелки можно обнаружить осадок, состоящий из мелких кристаликов. Выберите из их числа несколько самых крупных, затем слейте раствор в стакан, тщательно промойте тарелку, наполните её тем же раствором и положите на дно отобранные кристалики.

С течением времени кристаллы квасцов достигнут больших размеров; следует лишь ежедневно промывать тарелку и через каждые пять-шесть дней изготавливать свежий раствор.

Такой же опыт можно проделать с хромовыми квасцами, медным купоросом и другими солями.

Попробуйте нарушить форму выращенных кристаллов, например, обломайте их уголки, и положите обломок кристалла в раствор. Пройдёт некоторое время, и повреждённые места затянутся сами собой, – кристалл примет первоначальную форму. Такое свойство кристаллов называется регенерацией, или самовосстановлением.

Однако, как уже было упомянуто, кристаллы, растущие в природных условиях, часто имеют неправильную форму. Иногда кристаллы двух или нескольких веществ срастаются между собой. В толще природного кристалла можно видеть трещины, загрязнения и воздушные пузырьки. Все эти дефекты объясняются тем, что в природе никогда не бывает благоприятных условий, которые требуются для правильного развития кристаллов.

Если рассмотреть через увеличительное стекло кусок какой-нибудь глубинной горной породы, например гранита, который состоит из полевого шпата, кварца и слюды, то можно увидеть, что зёрнышки этих веществ представляют собой мельчайшие кристалики, сросшиеся в одно целое. Почти все они имеют неправильную форму с криволинейными очертаниями. Это объясняется тем, что такие кристалики развивались одновременно в ограниченном объёме и не позволили друг другу занять то место в пространстве, которое они могли занять, если бы росли на свободе.

3. Свойства кристаллов

Согните в дугу тонкую стальную пластинку и затем отпустите её. Она выпрямится и примет первоначальную форму. Это происходит под воздействием внутренних сил упругости, которые обусловлены сцеплением между атомами металла. Силы сцепления атомов и молекул в разных веществах различны. Так, в свинце они намного меньше, чем в стали. Поэтому и упругость пластинки из свинца во много раз ниже, чем упругость стальной пластинки. Действительно, согнув свинцовую пластинку, легко убедиться, что она уже не выпрямится, а сохранит ту форму, которую ей придали при сгибании.

Возьмите обыкновенную школьную резинку. В каком направлении её ни сдавливать, она одинаково упруга. Значит, упругие свойства резины не зависят от направления приложенной силы. Тела, у которых упругость, прочность и другие физические свойства одинаковы во всех направлениях; называются изотропными. Слово «изотропный» имеет греческое происхождение и означает – одинаковый по всем направлениям. К числу изотропных относятся аморфные тела, а также полукристаллические тела при условии, что зёрна-кристалики в них расположены друг относительно друга в полном беспорядке (примером таких тел могут служить литые металлы).

Но изотропны далеко не все тела. Взгляните на кусок дерева. Он имеет волокнистую структуру. Расколоть полено поперёк волокон очень трудно, потому что их нужно перерубить. Вдоль волокон расколоть полено гораздо легче, так как в этом случае достаточно лишь отделить волокна друг от друга не перерубая их. Следовательно, прочность дерева в различных направлениях не одинакова. Тела, обладающие одинаковыми физическими свойствами в одинаковых направлениях и различными в разных, называются анизотропными. Слово «анизотропный» означает – различный в разных направлениях. В качестве примера анизотропных веществ можно назвать такие, как прокатанный металл или проволока, зёрна которых расплющены и вытянуты в определённом направлении.

К числу анизотропных веществ относятся и монокристаллы. Силы сцепления между атомами и молекулами, образующими кристаллическую решётку, в разных направлениях различны. Поэтому для многих кристаллов характерна спайность – способность раскалываться по определённым плоскостям. Это свойство легко обнаружить, например в слюде, которая свободно расщепляется на параллельные слои.

Изотропность или анизотропность различных веществ часто характеризуется их твёрдостью.

Твёрдость – это способность тела сопротивляться проникновению в него другого тела, имеющего форму острия.

Раскалите докрасна стальную пластинку и затем опустите её в холодную воду. Такая операция называется закалкой. Закалённая пластинка значительно твёрже незакалённой. Это легко обнаружить, царапая пластинки каким-либо остриём. На незакалённой пластинке царапина будет заметно глубже, чем на закалённой.

Твёрдость изотропных веществ одинакова во всех направлениях. Твёрдость анизотропных веществ различна в зависимости от направления.

Это нетрудно проверить, слегка ударив каким-либо закруглённым остриём по определённой грани кварцевого кристалла. В результате удара на поверхности кварца образуется трещина, имеющая треугольную форму. Если же ударить тем же остриём по пластинке из воска, то форма углубления будет круглой.

Оптические свойства кристаллов, их теплопроводность и другие свойства также различны в разных направлениях.

Покройте боковую грань кристалла кварца воском. Затем коснитесь середины грани кончиком нагретой иглы. Поверхность кварца воспримет тепло, и воск вокруг иглы расплавится. Если бы теплопроводность кристалла была равной во всех направлениях, расплавленный участок имел бы вид круга. В действительности же этот участок имеет форму эллипса (рис. 8).

Рис. 8. Опыт, показывающий, что теплопроводность кварцевого кристалла зависит от направления.

Это означает, что теплопроводность кристалла различна в разных направлениях.

Чтобы знать свойства кристалла в любом направлении, нужно установить несколько основных, особо характерных направлений, так называемых координатных осей. Тогда направление любой прямой легко определить, измерив углы между этой прямой и осями.

В кристаллографии часто пользуются прямоугольной системой координат. Эта система состоит из осей, проходящих в трёх взаимно перпендикулярных направлениях (рис. 9).

Рис. 9. Прямоугольная система координат.

Координатные оси обозначаются латинскими буквами х, у и z (читается: икс, игрек, зет). Ясно, что каждой оси отвечает бесчисленное множество воображаемых параллельных линий, поскольку в одних и тех же направлениях свойства кристалла неизменны.

Для примера на рис. 10 показан кристалл кварца и его координатные оси.

Рис. 10. Кристалл кварца и его координатные оси. Каждой оси соответствует бесчисленное множество параллельных направлений.

Ось z, проходящая через вершины кристалла, называется главной, ось х – электрической, а ось у – механической. В кристалле кварца имеется 3 электрических и 3 механических оси. В направлениях х1, х2, x3 свойства кварцевого кристалла одинаковы. Они также одинаковы и в направлениях y1, y2, y3. Таким образом, кристалл кварца состоит как бы из трёх одинаковых, повторяющихся частей. Подобные тела называются симметричными.

На рис. 11 изображены круг, шестиугольник и пятиконечная звезда. Всё это примеры симметричных фигур. Из рисунка видно, что каждую симметричную фигуру можно разделить на несколько одинаковых частей линиями, получившими название осей симметрии.

Рис. 11. Примеры симметричных фигур – круг, шестиугольник и пятиконечная звезда.

Если вас и ваше отражение в зеркале изобразить на бумаге, то также получится симметричная фигура, причём линия, изображающая на рисунке плоскость зеркала, будет осью симметрии. Путём поворота вокруг оси симметрии симметричные части фигуры можно совместить друг с другом.

На рис. 12 показан параллелограмм. Точка С, в которой пересекаются его диагонали, является особой точкой. В каком бы направлении мы ни проводили через неё прямую линию, отрезки, отсекаемые на этой прямой противоположными сторонами параллелограмма, всегда будут равны между собой (СМ = СН, CM1 = СH1 и т. д.). Точку С называют центром симметрии данной фигуры.

Рис. 12. Центр симметрии параллелограмма.

В кристаллографии понятия симметрии и центра симметрии имеют более широкий смысл. Здесь под словом симметрия понимается не только закономерная повторяемость одинаковых по форме и размеру частей кристалла, но и повторяемость его физических свойств – упругости, твёрдости и т. д. Если провести через центр симметрии кристалла произвольную прямую, то эта прямая пересечёт поверхность кристалла в двух одинаково удалённых от центра точках. Более того, в любых равноудалённых от центра симметрии точках, лежащих на такой прямой, физические свойства кристалла будут одинаковы.

Но далеко не все кристаллы обладают центром симметрии. По своей симметричности кристаллы разделены на 32 класса. Кристаллы 21 класса не имеют центра симметрии. Такие кристаллы называются ацентричными, то есть не имеющими центра.


    Ваша оценка произведения:

Популярные книги за неделю