355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алекс Беллос » Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры » Текст книги (страница 4)
Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры
  • Текст добавлен: 26 сентября 2016, 13:44

Текст книги "Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры"


Автор книги: Алекс Беллос


Жанр:

   

Педагогика


сообщить о нарушении

Текущая страница: 4 (всего у книги 20 страниц) [доступный отрывок для чтения: 5 страниц]

Ципф обнаружил, что значение константы a всегда стремится к 1 независимо от того, кто автор книги и каково ее содержание. То есть зависимость между частотой встречаемости слов и их рангом всегда очень близка к обратно пропорциональной зависимости. В случае романа «Улисс» значение a равно 1.

Я считаю закон Ципфа чрезвычайно увлекательным. Он раскрывает заманчиво простую математическую закономерность, определяющую выбор слов. Я решил выяснить, соблюдается ли этот закон в книге, которую вы сейчас читаете. Для подсчета частотности слов я воспользовался компьютерной программой, а не гуммированной бумагой и ножницами. Просматривая частотную таблицу, я увидел, что частота встречаемости слов действительно обратно пропорциональна их порядковому номеру в таблице. Самое распространенное слово, употребляемое мною в книге («the»), встречается в десять раз чаще, чем десятое по частоте слово «was», примерно в сто раз чаще, чем сотое по частоте слово «who», и в тысячу раз чаще, чем тысячное слово «spirals».

Когда я составил на основе данных о частоте и ранге слов график (первый график, представленный ниже), оказалось, что соответствующие точки лежат близко к координатным осям. График, отображающий обратно пропорциональную зависимость, всегда представляет собой L-образную кривую. Сначала кривая резко снижается, а затем быстро выравнивается и переходит в своего рода «длинный хвост». Это говорит о том, что одни слова встречаются в тексте в огромном количестве, а другие почти не используются. (На самом деле во всех текстах, независимо от их объема, около 50 процентов слов употребляются только один раз. В данной книге таких слов 51 процент[35]35
  Слово, которое появляется в тексте только один раз, обозначается термином «гапакс легоменон» (от древнегреческого hapax legomenon – «названный только раз»). Этот термин звучит как имя персонажа одной из историй об Астериксе или название скандинавской группы в стиле Death Metal. В издании данной книги на английском языке есть только одно такое слово.


[Закрыть]
.)



Распределение частотности слов в книге «Алекс в Зазеркалье»

На нижнем графике отображены те же данные, но изменен масштаб. Расстояние от 1 до 10, от 10 до 100 и от 100 до 1000 теперь одинаковое на обеих осях, другими словами, мы имеем двойной логарифмический масштаб. График, напоминающий провисший кабель, как по волшебству превратился в туго натянутую струну. Появился некий математический порядок: точки графика образуют почти идеальную прямую.

Прямая линия на графике, построенном в двойном логарифмическом масштабе, – доказательство того, что эти данные подчиняются закону Ципфа (в Приложении 2 я объясню почему). С математической точки зрения прямая линия более полезна, чем кривая с длинным хвостом, поскольку ее свойства легче анализировать. В частности, у прямой есть постоянный градиент. Мы вернемся к понятию градиента немного позже, а пока вам нужно знать только то, что градиент – это степень наклона: отношение расстояния, покрытого прямой по вертикали, к расстоянию по горизонтали. Если нарисовать линию наилучшего соответствия и определить ее градиент, он и будет представлять собой константу a в уравнении закона Ципфа. Я рассчитал градиент линии на расположенном выше графике. Он чуть больше единицы, а это значит, что по сравнению с Джеймсом Джойсом я чаще использую самые распространенные слова и реже – наименее распространенные.

При более близком рассмотрении не все точки на графике попадают на прямую линию. Некоторые отклоняются от нее, особенно примерно двадцать слов, встречающихся в тексте чаще всего. Однако в большинстве случаев точки находятся очень близко к этой линии. Поразительно то, что порядковый номер подавляющего количества слов в этой книге позволяет достаточно точно определить частоту их использования, и наоборот.

Профессор Ципф обнаружил такую же обратно пропорциональную зависимость еще в одной книге – книге переписи населения США 1940 года. Однако в этот раз он подсчитывал не частотность слов, а численность населения крупных американских городов.


В это трудно поверить, но и здесь прослеживается та же закономерность. В Нью-Йорке (самом крупном городе США) численность населения в десять раз больше, чем в Кливленде (десятом по величине городе), и в сто раз больше, чем в Гамильтоне (сотом по величине городе). Никто не предлагал американцам расселяться с такой точностью. Тем не менее их выбор подчинялся строгой закономерности. Это происходит и сейчас. На самом деле все мы поступаем именно так. На представленных ниже графиках в двойном логарифмическом масштабе отображены данные о численности населения американских городов и их ранге (порядковом номере), взятые из отчетов о переписи населения США 2000 года, а также данные о численности населения крупнейших городов мира.



Распределение численности населения крупнейших городов США в 2000 году (график сверху) и крупнейших городов мира в 2013 году (график снизу)

Все точки стремятся к прямой линии, как послушные муравьи. Это означает, что здесь, как и прежде, применимо все то же общее уравнение:


На этот раз Ципф тоже пришел к выводу, что для городов и стран значение константы a почти или равно 1. В случае американских городов это значение составляет 0,947, для крупнейших городов мира – 1,156, а в случае переписи населения США 1940 года равно 1.

Безусловно, имеются и отклонения, особенно в наиболее крупных странах и городах. Например, в действительности в Индии (второй самой густонаселенной стране мира) жителей больше, чем можно было бы ожидать, опираясь на закон Ципфа. Однако волатильность (изменчивость значений) в начале упорядоченного списка неизбежна, поскольку там намного меньше данных. Можно предположить, что города и страны обходят друг друга в рейтинге по мере изменения численности населения под влиянием экономических, социальных и экологических факторов. Когда подобные изменения происходят в странах, занимающих самые высокие места в списке, отклонение от прямой линии становится гораздо заметнее. Тем не менее такой разброс данных в верхней части графика не должен приуменьшать важности точного расположения точек далее вниз по линии. Из этого следует, что частота встречаемости слов, а также численность населения городов и стран подчиняются универсальному закону.

Для Ципфа обнаружение одной и той же элементарной математической закономерности в разных контекстах было равносильно духовному пробуждению. «В явлениях повседневной жизни мы находим единство, упорядоченность и равновесие, внушающие нам веру в высшую разумность всего сущего, целостность которого пребывает за пределами наших полномочий и понимания», – писал Ципф. Он предложил принцип наименьших усилий в качестве теоретической базы для своих эмпирических наблюдений. Мы часто используем ограниченное количество слов, потому что нашему мозгу так легче; мы живем в больших городах, потому что нам так удобнее. Однако Ципф так и не смог предоставить убедительное математическое обоснование закона, как, впрочем, и никто сто лет спустя. Многие пытались это сделать, и хотя некоторые даже добились определенных успехов в данном направлении, причина, почему закон действует, по-прежнему остается загадкой. Математические модели часто подвергают критике за то, что они слишком упрощают сложные закономерности. В случае закона Ципфа верно обратное утверждение: математические модели невероятно сложны, а закономерность настолько проста, что ее может понять даже ребенок.

В начале ХХ века итальянский экономист Вильфредо Парето заявил, что распределение богатства среди населения подчиняется следующему закону:


Очевидно, что с математической точки зрения закон Парето эквивалентен закону Ципфа. Если составить список всех граждан страны в порядке уменьшения их богатства, график распределения последнего будет выглядеть точно так же, как представленный выше график частоты использования слов в этой книге. В целом самый богатый человек страны существенно богаче второго наиболее состоятельного человека, а тот, в свою очередь, намного богаче (хотя и чуть меньше, чем в предыдущем случае) третьего наиболее состоятельного человека, который гораздо богаче (хотя и чуть меньше, чем в предыдущем случае) четвертого наиболее состоятельного человека и т. д. В общем, к категории богачей относится крохотное меньшинство населения, тогда как его подавляющее большинство живет в бедности. Парето вывел этот закон на основании данных из многих стран и череды столетий. И он по-прежнему актуален.

Обратно пропорциональная зависимость описывает ситуации, в которых имеет место предельное, вопиющее неравенство. В случае закона Ципфа крохотный процент слов выполняет почти всю работу. В случае закона Парето в руках крохотного процента населения сосредоточена основная часть капитала. В 1906 году Парето написал, что в Италии около 20 процентов людей владеют 80 процентами земли. Это меткое замечание вошло в массовую культуру как «принцип Парето», или закон 80/20, согласно которому 20 процентов причин порождает 80 процентов следствий – фраза, отражающая несправедливость жизни. По мнению Ричарда Коха, автора книги о законе Парето[36]36
  Ричард Кох. Принцип 80/20. М.: Эксмо, 2012.


[Закрыть]
, 20 процентов сотрудников обеспечивают 80 процентов результата; 20 процентов покупателей приносят 80 процентов прибыли; 80 процентов счастья мы испытываем за 20 процентов времени. Ричард Кох пишет, что закон 80/20 – это ключ к управлению своей жизнью, поскольку мы можем преодолеть трудности современного мира только одним способом: сосредоточившись на 20 процентах самых важных вещей. Закон Парето хорошо запоминается благодаря своей арифметической точности: 80 + 20 = 100. Однако такая точность не всегда применима к математической модели, описываемой этим законом, так как обратно пропорциональная зависимость во многих случаях носит приближенный характер.

Как закон Парето, так и закон Ципфа гласят, что одна величина обратно пропорциональна определенной степени другой величины.

Если переменные величины – x и y, то общая формула этой математической зависимости выглядит так:


Уравнения данного типа обозначаются термином «степенной закон». Имена Ципфа и Парето носят два самых известных закона подобного рода, но за последние годы действие степенных законов проявилось в очень большом количестве самых разных ситуаций. Например, по результатам проведенного в Швеции опроса по поводу сексуальных привычек была установлена такая закономерность[37]37
  Fredrik Liljeros et al., The web of human sexual contacts, Nature, 2001.


[Закрыть]
:


Символ ≈ говорит не о том, что шведские женщины предпочитают мужчин с волнистыми усами. Он означает «приблизительно равно» и используется здесь потому, что данное уравнение обеспечивает наилучшее приближение. Примерно один из тысячи шведских мужчин имеет в течение года двадцать половых партнеров, в то время как большинство – только одного. Если продолжить линию максимального приближения, то получится, что где-то один из десяти тысяч мужчин имеет около шестидесяти половых партнеров в год.

В любви – как на войне. Исследователи, изучавшие случаи насилия в зонах военных конфликтов, выявили следующую закономерность[38]38
  N. Johnson et al., From old wars to new wars and global terrorism, arXiv: physics/0506213, 2005.


[Закрыть]
:


Массовая гибель людей в результате военных действий наблюдается гораздо реже по сравнению с числом единичных случаев. Подобные выводы были сделаны в ходе анализа и сравнения данных о разных войнах. В мире велось всего несколько войн, повлекших за собой гибель миллионов людей; сотни тысяч людей лишились жизни в чуть большем количестве войн; еще больше войн унесло жизни десятков тысяч людей и т. д.

Чарльз Дарвин написал за свою жизнь тысячи писем, многие из которых представляли собой ответ на полученные письма. На большинство из них он отвечал в первый же день, а чтобы ответить на другие, ему понадобились годы[39]39
  Joao Gama Oliveira and Albert-Laszlo Barabasi, Human dynamics: Darwin and Einstein correspondence patterns, Nature, 2005.


[Закрыть]
:


Мы отвечаем на электронные письма по такой же схеме: на большинство даем ответ немедленно, тогда как некоторые лежат в папке «Входящие» целую вечность.

Японские ученые, оценив объем продаж книг за период с 2005 по 2006 год, пришли к следующему выводу[40]40
  Takashi Iba et al., Power-Law Distribution in Japanese Book Sales Market, Fourth Joint Japan-North America Mathematical Sociology Conference, 2008.


[Закрыть]
:


Иными словами, несколько книг становятся лидерами продаж, тогда как другие так и остаются непроданными. В киноиндустрии в основе модели ведения бизнеса лежит та же закономерность: незначительное количество фильмов становятся блокбастерами, тогда как большинство терпят крах в прокате. В обоих случаях переход от успеха к неудаче математически предсказуем.

Мы получили четыре представленных выше уравнения, отобразив фактические данные на графике, выполненном в двойном логарифмическом масштабе (эти графики размещены чуть ниже), и измерили градиент линий наилучшего соответствия. (Снижение линии на последнем участке данных, полученных в Японии, объясняется нехваткой места на полках: книжные магазины не могут вместить все книги, которые теоретически могли бы быть у них в наличии.) Прямая линия на графике с логарифмическим масштабом по обеим осям означает, что здесь имеет место степенной закон, а градиент этой линии – константа a в уравнении степенного закона. Я не указывал значения константы k в каждом из уравнений, поскольку она зависит от размера выборки и не влияет на форму кривой, поэтому не представляет для нас интереса. Не забывайте о том, что, если бы в каждом из этих случаев данные были отображены на графике в нормальном масштабе, мы получили бы L-образную кривую с резким снижением в начале и длинным хвостом.





Данные о поведении шведских мужчин, колумбийских боевиков, Чарльза Дарвина и японских покупателей книг подчиняются степенному закону

Я привожу так много примеров для того, чтобы вы увидели мир таким, каким его видели Джордж Ципф, Вильфредо Парето и Ричард Кох. Если мы возьмем, к примеру, распределение роста в произвольной группе людей, мы сможем вычислить его среднее значение, поскольку вокруг него группируется больше всего чисел. Например, средний рост британских мужчин составляет 175 сантиметров. Но что касается частоты употребления слов, богатства, количества половых партнеров, войн, времени для ответа на письма, книг и фильмов, то тут мы не можем говорить о среднем значении. Понятие средней величины неприменимо к употреблению слов, распределению богатства, продаже книг или кассовым сборам от проката фильмов. Когда речь идет о поведении человека, мы живем в мире, смещенном в сторону экстремальных значений.

Степенные законы широко распространены не только в гуманитарных, но и в естественных науках. Магнитуда землетрясения обратно пропорциональна количеству землетрясений данной магнитуды; размер лунного кратера обратно пропорционален числу кратеров данного размера; если разбить замерзшую картофелину о стену, размер каждого фрагмента будет обратно пропорционален количеству фрагментов этого размера[41]41
  Mark Buchanan, Ubiquity, Weidenfeld & Nicolson, 2000.


[Закрыть]
. Распространенность степенных законов в физике объясняет, почему многие ученые, исследующие эти законы в социальных системах, начинали свою карьеру в качестве физиков. Один из таких ученых – Альберт-Ласло Барабаши, авторитетный профессор Северо-Восточного университета в Бостоне.

В настоящее время Барабаши занимается изучением сетей[42]42
  Albert-Laszlo Barabasi, Linked, Perseus, 2002; Albert-Laszlo Barabasi, Bursts, Penguin, 2010.


[Закрыть]
. В определенных сетях, таких как интернет, принята математическая теория, которая объясняет причины появления степенных законов. Например, популярность сайтов в целом подчиняется степенному закону, так же как и рейтинг пользователей «Твиттера» по количеству подписчиков. «Тот факт, что степенные законы столь типичны, универсальны и легко узнаваемы, приводит в недоумение, – говорит Барабаши. – Казалось бы, в мире должно быть больше разнообразия!»

Предположим, на рисунке слева изображена модель сети, состоящей из трех узлов и двух связей. В качестве узлов могут выступать люди или сайты, а в качестве связей – любой тип соединения между ними. Барабаши утверждает, что степенной закон имеет место в случае роста сети по принципу предпочтительного присоединения. Это означает, что, когда в сети появляется новый узел, вероятность его связи с любым другим узлом, уже включенным в сеть, пропорциональна количеству связей, имеющихся у этого узла. Другими словами, узлы с большим числом связей получают еще больше связей. Богатые становятся богаче. Известные еще известнее. У узла с наибольшим количеством связей самые высокие шансы на получение новых связей, и чем больше связей у него появляется, тем привлекательнее он становится.



Если маленькая сеть начнет расти по принципу предпочтительного присоединения, то со временем она будет напоминать крупную сеть

Если бы сеть, расположенная сверху, расширялась по принципу предпочтительного присоединения, после включения в нее пары сотен новых узлов она выглядела бы так же, как сеть снизу. У большинства узлов этой сети есть только одна связь, и всего несколько узлов (называемых хабами) имеют несколько связей. Если упорядочить узлы по числу связей и построить график, получится уже знакомая вам кривая с длинным хвостом. «Степенной закон вступает в игру каждый раз, когда вы принимаете решение [о том, с кем устанавливать связь]», – утверждает Барабаши. Если включить в сеть несколько миллионов узлов по принципу предпочтительного присоединения, то она будет выглядеть точно так же, как карта связей между пользователями «Твиттера» или модель интернет-пространства.

Одна из причин столь широкой распространенности сетей со степенным распределением узлов по количеству связей кроется в их особой устойчивости. Если в такой сети вы удаляете узел случайным образом, это, скорее всего, будет второстепенный узел (поскольку таких узлов гораздо больше), а не хаб, поэтому в целом на всей сети это особо не скажется. И наоборот, степенные сети становятся очень уязвимыми, если происходит атака на хаб. Иными словами, если выйдет из строя мой сайт, этого никто не заметит, кроме меня самого. Однако, если хотя бы на пять минут отключится сайт Google, наступит глобальный хаос.

Интерес к степенным законам объясняется тем, что они позволяют выстроить на удивление простую математическую модель для целого ряда сложных явлений. Кроме того, их очень легко обнаружить. Как мы уже видели, две переменные подчиняются степенному закону, если точки на графике в двойном логарифмическом масштабе образуют прямую линию.

Однако в последнее время все чаще высказываются предположения о том, что ученые слишком спешат с выводами о присутствии степенного закона в полученных ими данных, поскольку в ряде случаев точки данных образуют на графике кривые линии, и их необходимо описывать другими уравнениями[43]43
  Michael P. H. Stumpf and Mason A. Porter, Critical Truths About Power Laws, Science, 2012; Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman, Power-Law Distributions in Empirical Data, SIAM Review, 2009.


[Закрыть]
. Безусловно, это важная тема для обсуждения, но она выходит за рамки данной книги. Тем не менее у степенных законов есть один аспект, который отрицать невозможно: они обладают одним удивительным математическим свойством.

Рассмотрим уравнение степенного закона: y=1/x². Построив график этого уравнения для значений x от 2 до 10, мы получим первую кривую, изображенную ниже; график уравнения для значений x от 20 до 100 даст нам вторую кривую, изображенную ниже.



Кривая y=1/x² на графике в двух масштабах

Вы заметили разницу? Кривые абсолютно одинаковы. На самом деле, если построить кривую от n до 5n для любого значения n, она будет выглядеть точно так же, как на рисунке выше. Кривые для значений x от a до b всегда одинаковы, если отношение a/b представляет собой постоянную величину. Степенные законы раскрывают одну и ту же закономерность в любом масштабе, как бы далеко по хвосту вы ни продвинулись.

Если говорить о длинных хвостах, то такой был у Годзиллы.

Рост этого японского монстра (мутировавшего динозавра) – около 100 метров, что примерно в 50 раз больше роста высокого взрослого человека. А теперь представьте себе человека в 50 раз выше обычного роста, но с телом такой же формы. Этот увеличенный человек был бы в 50 раз шире и в 50 раз толще, а значит, в 50 × 50 × 50 = 125 000 раз тяжелее, чем раньше. Однако его кости в поперечном сечении увечились бы только в 50 × 50 = 2500 раз, стало быть, каждый квадратный дюйм его костей должен был бы поддерживать в 50 раз больше веса. Кости гигантского человека сломались бы при первой же попытке сделать шаг. Годзиллу постигла бы та же участь.

Согласен, нет ничего утомительнее, чем ворчание умника, утверждающего, что в реальном мире такой монстр просто не выжил бы. Тем не менее этот аргумент объясняет, почему животные разных размеров имеют разную форму. Чем крупнее животное, тем толще должны быть его кости относительно роста[44]44
  В книге Discourses and Mathematical Demonstrations Relating to Two New Sciences («Беседы и математические доказательства двух новых наук») Галилей сделал следующий набросок двух костей – маленькой и тонкой, а также большой и толстой. Он писал, что у большого животного большая кость «выполняла бы ту же функцию, что и маленькая кость у маленького животного».
  Компания по выпуску игрушек для собак Nylabone продает нейлоновые жевательные кости, имеющие точно такую же форму, как на представленном ниже рисунке. В компании утверждают, что эти кости (получившие название Galileo) – «самые прочные жевательные кости для собак».


[Закрыть]
. К такому выводу впервые пришел Галилей в 1638 году. У слона кости пропорционально толще, чем у человека, кости которого, в свою очередь, пропорционально толще костей собаки. Галилей понял, что у более крупных животных кости толще, потому что им приходится выдерживать больше веса в расчете на размер поперечного сечения кости.

Наблюдение Галилея можно представить в виде уравнения, в котором фигурируют площадь и объем. Утверждение о том, что площадь объекта в поперечном сечении находится в прямо пропорциональной зависимости от квадрата высоты, тогда как объем – в прямо пропорциональной зависимости от куба высоты, можно выразить двумя уравнениями:

площадь = l (высота)²;

объем = m (высота)³,

где l и m – константы.

Исключив переменную «высота», получим следующее уравнение:


Его можно преобразовать так:


А это уравнение можно отнести к следующему типу:

y = kxa,

где x и y – переменные, а k и a – константы.

Уравнение данного типа также называется степенным законом. Когда степенной закон выражен в такой форме, говорят, что переменная y находится в прямой пропорциональной зависимости от xa, а когда он представлен в виде уравнения y=k/xa, о котором шла речь выше, переменная y находится в обратной пропорциональной зависимости от xa.

График уравнения степенного закона y = x размещен ниже. На первом графике в нормальном масштабе кривая по мере повышения выравнивается. Если y – это площадь, а x – объем, то это показывает, что по мере увеличения объема площадь тоже увеличивается, но не так быстро. На графике в двойном логарифмическом масштабе (второй график) степенной закон, отражающий прямо пропорциональную зависимость, дает прямую линию с наклоном вправо.



Кривая y = x на графике в простом и двойном логарифмическом масштабе

Уравнение степенной зависимости между объемом и площадью обозначается также термином «закон масштабирования», поскольку оно демонстрирует, что происходит с измеримой величиной объекта (в данном случае площадью поперечного сечения) в результате увеличения общего размера.

В 30-х годах ХХ столетия швейцарский зоолог Макс Клайбер измерил вес нескольких видов млекопитающих и их уровень метаболизма (минимальное количество энергии, вырабатываемое животными в состоянии покоя)[45]45
  Melanie Mitchell, Complexity: A Guided Tour, Oxford University Press, 2009.


[Закрыть]
. Когда ученый отобразил полученные данные на графике в двойном логарифмическом масштабе, получилась прямая линия, на основании которой он вывел следующий степенной закон:

скорость обмена веществ ≈ 70 (масса)¾

Этот закон известен как закон Клайбера. Впоследствии биологи расширили его действие на всех теплокровных животных, как показано на представленном ниже рисунке. Скорость обмена веществ растет не так быстро, как масса, а это говорит о том, что чем крупнее животные, тем эффективнее они вырабатывают энергию. Было также выявлено, что жизнь животных подчиняется и многим другим законам масштабирования. Например, продолжительность жизни животных прямо пропорциональна массе в степени ¼, а частота сердечных сокращений обратно пропорциональна массе в степени ¼. Поскольку коэффициент степенного закона – это в большинстве случаев величина, кратная ¼, биологические степенные законы называют законами четвертного степенного масштабирования. Учитывая разнообразие животного мира (размер млекопитающих колеблется от этрусской мыши весом около одного грамма до голубого кита, который в 100 миллионов раз тяжелее), действительно замечательно, что информация о размере животного позволяет так много сказать о нем.


Закон Клайбера

Физик Джеффри Уэст из Института Санта-Фе и биологи Джеймс Браун и Брайан Энквист из Университета Нью-Мексико разработали математическую теорию, которая объясняет эффект четвертного степенного масштабирования[46]46
  Geoffrey B. West, James H. Brown, and Brian J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science, 1997.


[Закрыть]
. Если в общих чертах, то они утверждают, что при рассмотрении любого организма как транспортной системы (кровь поступает в аорту, разветвляющуюся на артерии, которые, в свою очередь, разветвляются на более узкие кровеносные сосуды) ее оптимизация под имеющееся пространство порождает степенной закон. Подробное объяснение данного феномена выходит за рамки материала этой книги, но представляет интерес в данном контексте в связи с другой работой Уэста – изучением организма иного типа: города.

Уэст и его коллеги обнаружили, что масштабирование по степенному закону весьма характерно для маленьких и больших городов[47]47
  Luis M. A. Bettencourt et al., Growth, innovation, scaling, and the pace of life in cities, PNAS, 2007.


[Закрыть]
. Проанализировав огромное количество экономических и социальных данных и отобразив полученные результаты на графиках в двойном логарифмическом масштабе, они установили, что в США имеют место следующие закономерности:

количество изобретателей = k (численность населения)1,25

совокупная заработная плата = k (численность населения)1,12

количество случаев заболевания СПИДом = k (численность населения)1,23

количество тяжких преступлений = k (численность населения)1,16

В этих уравнениях показатель степени (экспонента) больше 1, а это значит, что чем крупнее город, тем в нем больше изобретателей, совокупной заработной платы, случаев заболеваний СПИДом и тяжких преступлений на душу населения. Здесь налицо пропорциональная зависимость. По всем этим городским индикаторам значение показателей степени составляет примерно 1,2, и такая сосредоточенность вокруг одного значения интересна сама по себе. Исходя из этого, получается, что при увеличении размера города вдвое можно ожидать роста количества изобретателей, совокупной заработной платы, случаев заболеваний СПИДом и тяжких преступлений на душу населения на 15 процентов.

В случае ряда других городских индикаторов показатель степени меньше 1, а это значит, что рост города может привести к сокращению следующих показателей на душу населения:

количество автозаправочных станций = k (численность населения)0,77

длина электрических кабелей = k (численность населения)0,83

При увеличении размера города в два раза количество автозаправочных станций и длина электрических кабелей на душу населения могут сократиться на 15 процентов. Другими словами, в городах имеет место математически прогнозируемая экономия от масштаба – и это происходит во всем мире. «Японские города развивались абсолютно независимо от европейских и американских городов, тем не менее закон масштабирования действует [в каждой стране], – говорит Уэст. – Это наводит на мысль о существовании некой универсальной движущей силы». Уэст убежден, что степенные законы действуют в городах по той же причине, что и в мире животных. Город – это и транспортная сеть. Подобно тому как кровеносная система обеспечивает перемещение крови по толстым, а затем по все более тонким сосудам, города тоже распределяют ресурсы по сети разветвляющихся дорог, кабелей и труб.

Мы сами решаем, где нам жить, на что тратить деньги и как расходовать свое время. Тем не менее, если взглянуть на наше коллективное поведение сквозь призму чисел, становится очевидным, что оно вполне предсказуемо и подчиняется простым, взаимно совместимым математическим законам. Мы так распределены по земному шару, что в 30 процентах больших и малых городов численность населения начинается с единицы, размер городов в целом обратно пропорционален их номеру в упорядоченном по численности населения списке и все города являются версиями друг друга, образованными по принципу степенного масштабирования. Возможно, в чем-то этот мир сложен. Но в чем-то – достаточно прост.

Числа – незаменимый инструмент, помогающий нам понять мир, в котором мы живем. То же самое можно сказать о фигурах. Именно изучение одной из фигур дало начало развитию западной математики.


    Ваша оценка произведения:

Популярные книги за неделю