Текст книги "Популярная аэрономия"
Автор книги: А. Данилов
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 3 (всего у книги 10 страниц)
Значит, именно в области D происходит "смена власти". Царство отрицательных ионов сменяется царством электронов. Поскольку процесс непрерывный, обязательно где-то есть высота Ар, где концентрации электронов и отрицательных ионов равны. Точное значение hр пока не известно, равно как плохо известны и величины отношения количества отрицательных ионов к количеству электронов ([Х-]/[е] = λ) ниже hр. Считается, что hр≈75 км днем в спокойных условиях. Ночью высота hр должна возрастать, а во время сильных возмущений (вспышка, полярное сияние) – падать. Поскольку в силу так называемой квазинейтральности ионосферной плазмы всегда количества положительно и отрицательно заряженных частиц в единице объема равны:
Формула положительно и отрицательно заряженных частиц в единице объема
мы можем полагать выше hр [Х+]≈[е] и ниже hр [X+]≈[X-].
Рисунок дает пример распределения заряженных частиц в области D для нормального спокойного дня и двух крайних случаев – спокойной ночи и возмущенного дня. Иллюстрируя все сказанное об изменении соотношения между [е] и [Х-], рисунок дает в то же время представление о том, как сильно могут изменяться абсолютные концентрации всех заряженных частиц и прежде всего интересующей нас электронной концентрации.
На самом деле изменчивость электронной концентрации в области D очень велика. Несмотря на технические трудности измерения этой концентрации, известно уже несколько типов вариаций [е] в зависимости от разных геофизических параметров. Чтобы не усложнять наш рассказ, мы не будем останавливаться на этих регулярных вариациях, но посвятим несколько фраз аномальным (возмущенным) условиям в области D.
Больше всего нас будут интересовать три типа возмущений: солнечные вспышки, явления поглощения в полярной шапке и так называемая зимняя аномалия.
Изменчивость электронной концентрации в области D
Первый тип возмущения состоит в резком увеличении концентрации заряженных частиц в области D (иногда в 100 раз и более) непосредственно после вспышки на Солнце. Вызывается такое возмущение, совершенно очевидно, рентгеновским излучением вспышки, которое обычно бывает в сотни и тысячи раз сильнее излучения спокойного Солнца.
Второй тип возмущения также связан с солнечными вспышками, но более косвенным образом. Оно вызывается протонами с энергиями в десятки миллионов электронвольт, вторгающимися в высокоширотную область земной атмосферы (выше примерно 70-й геомагнитной широты – это и есть область полярной шапки) после вспышки на Солнце.
Третий тип возмущения – зимняя аномалия поглощения – состоит, как было установлено относительно недавно, также в довольно сильном увеличении концентрации заряженных частиц на высотах области D. Это увеличение может происходить в 5 – 10 раз, и вызывается оно... Вот, правда, чем оно вызывается, пока достоверно неизвестно. Отмечают лишь, что во время появления зимней аномалии наблюдаются, как правило, различные явления в нижележащих слоях нейтральной атмосферы: стратосферные потепления, смена режимов циркуляции и т. д.
Все три типа возмущений очень характерны для области Z), и их изучение уже дало, как мы увидим в главе 5, много ценного для физики нижней ионосферы. Что касается ионного состава области D, то измерения этого состава еще настолько малочисленны и уникальны, что о них пойдет отдельный подробный разговор. Здесь для общности отметим лишь, что вопрос с химическим отождествлением отрицательных ионов все еще остается открытым, хотя несколько первых измерений их состава и было сделано. С положительными ионами дело обстоит несколько лучше: мы знаем, что в области D наблюдаются в основном положительные ионы-связки (Н3O+, Н5O+, NO+×H2O и т. д.) и обычные ионы NO+ и O2+. Соотношение между этими двумя типами ионов сильно меняется в зависимости от условий, что дает нам ключ к пониманию физики ряда процессов (см. главу 5). Заканчивая рассказ о структуре области D, остается добавить, что в ней всегда, по современным представлениям, температура электронов равна температуре нейтральных частиц.
Переходя теперь к вышележащим областям ионосферы, мы имеем одно несомненное преимущество. Нам больше не 'нужно беспокоиться о распределении разных заряженных частиц (как это было в области D). Все, что нас интересует, это профиль электронной концентрации, ибо он выше 90 км всегда тождествен профилю суммарной концентрации положительных ионов.
На рисунке схематически показаны два таких профиля – для дневных и ночных условий. Если мы будем двигаться вверх от высоты 90 км вдоль дневного профиля, величина [е] будет довольно быстро (иногда на порядок величины) возрастать до высоты примерно ПО км, где темп увеличения [е] с высотой резко замедляется. Эта точка перегиба на профиле электронной концентрации и фиксируется на ионограммах как дневной слой Е. Концентрация электронов здесь обычно составляет (3÷-:10) 104 см-3.
Двигаясь дальше вверх, мы наблюдаем постепенное увеличение [е] вплоть до максимума области F2, где [е] обычно составляет около 106 см-3. Где-то в области высот 180 – 200 км темп изменения электронной концентрации меняется: относительно слабое возрастание [е] между областями Е и F (130 – 180км) сменяется более быстрым ростом в основании области F2 (более 200 км). Если это изменение темпа выражено достаточно хорошо, соответствующая точка перегиба проявляется на монограмме, и мы говорим, что появился слой F1.
Изменчивость электронной концентрации
Ночью картина несколько отлична. Концентрация в максимуме области Е оказывается в 10 – 100 раз меньше, чем днем. Уменьшение [е] между областями Е и F1 происходит еще сильнее, поэтому ночью иногда максимум области Е может выглядеть как реальный слой с падением [е] выше и ниже максимума. На профиле [е] на высотах 100 – 170 км появляется сильная изрезанность, причем перепады концентрации между соседними максимумами и минимумами могут достигать фактора 3 – 4. Иногда (особенно часто это случается в ночное время) в области Е может появляться узкий (с полушириной порядка нескольких километров) слой электронной концентрации (на нашем рисунке он показан пунктиром) с максимальной величиной [е], в 3 – 5 и даже в 10 раз превышающей концентрацию на соседних высотах. Это так называемый спорадический слой Е, обычно обозначаемый как Еs. Он хорошо виден на монограммах вертикального зондирования ионосферы.
Изрезанность ночного профиля электронной концентрации в области высот 100 – 170 км и появление спорадического слоя Es говорят (как увидим в главе 4) о сильном влиянии динамических процессов на ночную ионосферу.
В области F2, как видно на рисунке, концентрация электронов также сильно уменьшается ночью, при этом повышается и высота максимума [е].
Намереваясь двинуться, в нашем рассказе о профиле [е], дальше вверх, выше максимума области F2, мы неизбежно наталкиваемся на вопрос: а до каких пор дальше? Где верхняя граница ионосферы?
Вопрос этот не имеет общепринятого решения. В качестве верхней границы ионосферы рассматривают иногда высоту, где сравниваются концентрации ионов кислорода и водорода. Это происходит в зависимости от условий на высотах 600 – 1000 км. Область, лежащую выше, называют тогда протоносферой. Иногда границей ионосферы считают область, где столкновения между частицами становятся несущественными и ионы и электроны начинают "жить" по законам бесстолкновительной плазмы. В этом случае ионосфера переходит прямо в плазмосферу. Наконец, иногда, чисто условно, в качестве верхней границы ионосферы берут высоту (≈1000 км), где сравниваются концентрации нейтральных и заряженных частиц. Тот факт, что вопрос о верхней границе ионосферы окончательно не решен, является лучшим доказательством того, что он и не очень важен и носит скорее терминологический характер. Говоря "ионосфера", все обычно имеют в виду ту область верхней атмосферы, которая наиболее важна для практических целей, т. е. оказывает наибольшее влияние на распространение радиоволн. Это высоты от 50 до 400 – 500 км. Именно этим интервалом высот ограничим свое рассмотрение и мы.
Как много разных ионов...
Следующим важным параметром после электронной концентрации является ионный состав. Ведь если все электроны одинаковы, то ионов наблюдается много и разных. И они сильно различаются по массе, химическим свойствам, даже размерам. Вопрос о том, из каких именно ионов состоит ионосфера на данном уровне, имеет, как мы увидим, очень большое значение для аэрономии.
В области Е ионосфера состоит целиком из ионов NO+ и O2+ (см. рисунок). Днем эти ионы представлены на высотах 100-130 км примерно в равных количествах ([NO+]/[0+]≈1). Ночью доля ионов NO+ возрастает и отношение [NO+]/[0+] может достигать 5-8.
Картина изменения ионного состава в области Е была бы очень простой и понятной, если бы время от времени там не появлялись так называемые метеорные ионы. Здесь нам придется сделать небольшое отступление и рассказать об этом интересном явлении в верхней атмосфере.
Изменения ионного состава в области Е
В ряде масс-спектрометрических экспериментов (впервые это сделал советский ученый В. Г. Истомин в 1961 году) были обнаружены наряду с обычными азотно-кислородными ионами также неожиданные для атмосферы ионы: Na+, Fe+, К+, Ca+, Mg+, A1+, Si+ и т. д. Большинство из них– ионы металлов, поэтому их так и стали называть ионами металлов или металлическими ионами. Но среди них есть и кремний – неметалл, поэтому такое название не совсем точно. Предполагая, что эти ионы появляются в результате испарения в верхней атмосфере микрометеоров, их стали называть метеорными ионами– название также не совсем точное, поскольку метеорная природа этих ионов окончательно не доказана и обсуждаются и другие источники их происхождения. За неимением лучшего мы будем пользоваться этим последним названием, помня, однако, о его некой условности.
Метеорные ионы
Метеорные ионы появляются обычно на профилях распределения ионных концентраций в виде узких слоев с полушириной в несколько километров или даже сотни метров и с очень большим градиентом концентрации от максимума к краям слоя. Как правило, концентрация этих ионов примерно на порядок меньше, чем концентрация основных ионов N0+ и 0+ (такой случай изображен на рисунке внизу). При этом метеорные ионы практически не влияют на профиль электронной концентрации. Однако наблюдаются ситуации, когда концентрация этих ионов в максимуме сравнима с концентрацией ионов 0+ и N0+ в окрестностях слоя или даже превышает ее (см. рисунок на стр. 34). В этом случае метеорные ионы влияют на основные ионосферные характеристики двояко. Во-первых, появляется пик на профиле электронной концентрации, соответствующий пику метеорных ионов. Во-вторых, внутри узкого слоя этих ионов резко уменьшаются (часто ниже границы чувствительности масс-спектрометра) концентрации обычных ионов 0+ и N0+.
Наблюдения концентрации этих ионов
Хотя слои метеорных ионов регистрировались примерно в двух десятках масс-спектро-метрических экспериментов, закономерность их появления все еще плохо понятна. Известно лишь, что чаще всего эти слои появляются в двух высотных интервалах: 92 – 93 и 105 – 110 км. Однако регистрировались такие слои и на других высотах, практически во всей области от 80 до 140 км. Другая особенность этих слоев – одновременное появление нескольких различных ионов (скажем, Mg+, Fe+, Na+) внутри одного слоя. При этом относительная концентрация метеорных ионов может быть различна – в одних случаях в слое доминирует Fe+, в других – Mg+, а иногда слой может состоять, скажем, практически из ионов Na+ с небольшой добавкой К+, Са+ или других ионов. В целом, чаще в таких слоях встречаются, ионы магния и железа.
Относительная концентрация метеорных ионов
Что касается физикохимии метеорных ионов, то она все еще известна очень плохо. Единственное, что представляется несомненным – это роль механизма ветрового сдвига (см. главу 4, о ночной ионизации выше 100 км) в формировании узких слоев указанных ионов и связь их с появлением спорадического слоя Es.
Но вернемся к описанию "нормального" ионного состава. Двигаясь вверх от области Е, мы обнаружим, что относительное количество (т. е. доля [NO+]/[e] и [0+]/[е] ионов N0+ и 0+ начинает уменьшаться. Их вытесняют ионы атомного кислорода, которые уверенно регистрируются с высот 130 – 140 км. Относительная концентрация ионов 0+ быстро возрастает с высотой и уже на высотах 170 – 190 км днем количество ионов 0+, с одной стороны, и NO+ и О2+ – с другой, оказывается равным. Выше безраздельно доминируют ионы 0+ и ионосфера становится практически чисто атомной. Однако ионы N0+ и О+ прослеживаются масс-спектрометром до больших высот – в максимуме области F2 их концентрация составляет около 1% общей концентрации ионов. И это, как мы увидим, очень важно. Ведь молекулярные ионы очень активные участники процесса рекомбинации. Даже в таких малых относительных количествах они все еще играют первую скрипку в рекомбинаций в слое F2.
Почти одновременно с ионами О+ на масс-спектрах начинают появляться ионы атомного и молекулярного азота (N+ и N2+). Ионы N+ ведут себя как младший партнер ионов атомного кислорода – высотный профиль N+ довольно точно повторяет профиль ионов О+, однако концентрация составляет около 10% от [О+]. Ионы N+ образуют в ионосфере типичный слой с максимумом на высотах 180 – 220 км, причем эти ионы всегда остаются малой ионной компонентой – их относительная концентрация обычно не превосходит 10 – 15 %.
Коонцентрация ионов О+
Выше максимума области F2 к безраздельно господствующим там ионам О+ начинают примешиваться ионы гелия, а потом и водорода. Ионы гелия не в силах составить достойной конкуренции ионам 0+ и так и остаются малой ионной компонентой, достигая максимальной относительной концентрации 10-20% на высотах 500 – 600 км. А вот относительная концентрация ионов водорода неуклонно растет с высотой и наступает момент (точнее, высота), где концентрации Н+ и 0+ сравниваются. Выше доминируют ионы Н+. Это и есть протоносфера.
Ночью изменение ионного состава с высотой происходит в принципе так же, с той лишь разницей, что смена режима от молекулярных ионов к 0+ происходит на больших высотах. Ионы N+ и N2+, как правило, ночью не регистрируются.
Концентрация ионов
Все, что мы рассказали здесь об изменении ионного состава с высотой, отображено на двух рисунках на стр. 35 (для дня и ночи соответственно). На этих рисунках показано относительное содержание всех рассмотренных ионов, причем ширина области, занятой данным ионом на данной высоте, равна его относительной концентрации в процентах. Например, на высоте 200 км днем [0+]/[е] = 45 %; [N+]/M = 5% ; [N2+ ]/[е] =10%; [NO+]/[e]=20 % и[О2+]/[е] = 20%.
Какова температура электронов
Мы уже говорили о температуре верхней атмосферы. Говорили об ее изменении и о связанном с ним делении атмосферы на области. Но при этом всюду шла речь о температуре нейтральных частиц Тн.
Возникает вопрос: будут ли заряженные частицы в ионосфере иметь ту же температуру, что и нейтральные атомы и молекулы окружающего газа? Вопрос этот, далеко не простой, вызвал в свое время много дискуссий, а некоторые частные проблемы не решены до конца и по сей день.
На вопрос о том, отличается ли температура ионов Ти от температуры нейтралов Тн, сегодня следует ответить отрицательно. Нет, достаточно тяжелые ионы не успевают получить необходимого избытка энергии, чтобы их температура повысилась заметным образом, поэтому считают (в пределах современных точностей), что Ти=Тн.
Другое дело легкие частицы – электроны. Они (как и ионы) получают избыток кинетической энергии в самом акте своего рождения. И этот избыток приводит к тому, что электроны оказываются горячее окружающего их нейтрального газа. Сколь велика разница Те – Тн, зависит от того, насколько быстро происходит "охлаждение" электронов в столкновениях с нейтралами. Чем выше плотность атмосферы, тем чаще столкновения и тем труднее электрону удержать свой избыток энергии, тем меньше будет Те – Тн.
Именно поэтому в области D, где плотность нейтральных частиц велика, электронная температура никогда не отличается заметным образом от нейтральной. В то же время в области F температура электронов днем в 1,5 – 2 раза выше, чем температура нейтралов, и может достигать 3000 С. Ночью разница Те – Ти существенно уменьшается, ню все же на высотах области F2 может составлять несколько сот градусов.
Острее всего стоит сейчас вопрос о дневных Те в области Е и непосредственно над ней. Зондовые измерения дают превышение Те над Тн уже на 100 – 110 км, и соответственно дневные Те на 110 – 150 км равны примерно 600– 1000 К (при Тн в пределах 300 – 600 К. В то же время измерения с земли методом некогерентного рассеяния не обнаруживают никакой разницы между температурами электронов и нейтралов на этих высотах. При измерениях этим методом Те начинает превышать Тн только с высоты 150 – 160 км. Явное противоречие налицо. Вот и попробуйте построить эмпирическую модель электронной температуры!
Методом некогерентного рассеяния
Оба метода (и зондовый, и некогерентного рассеяния) имеют, конечно, свои трудности и недостатки. Но даже с учетом этих трудностей пока не удается привести результаты различных измерений Те в области Е к одному знаменателю. Чем больше проводится проверок и уточнений, тем прочнее стоят сторонники каждого метода на своих позициях. А разница остается. И это тем более удивительно, что на больших высотах никаких систематических расхождений эти два метода не дают. Ну а на высотах 110 – 150 км каждый выбирает ту электронную температуру (по зондовым или наземным измерениям), которая ему больше нравится... Как в среднем изменяется температура электронов с высотой в ионосфере днем и ночью, показано на рисунке.
Сейчас активно изучается вопрос о вариациях электронной температуры. Уже ясно, что Те выше, скажем, 160 км (не будем пока касаться скользкой области высот 100 – 150 км) испытывает сильные вариации в течение суток. Точнее говоря, электронная температура, видимо, тесно связана с зенитным углом Солнца. Это и понятно, поскольку поглощение коротковолнового излучения Солнца является основным источником нагрева ионосферной плазмы.
Другие вариации Те не так хорошо установлены и не так понятны. Похоже, что электронная температура на данной высоте при сходных условиях будет тем выше, чем выше солнечная активность (скажем, число Вольфа), и тем ниже, чем сильнее магнитное возмущение (чем больше, скажем, магнитный Криндекс). Однако надежных количественных данных пока нет.
3. Кто отвечает за образование ионосферы
В этой главе мы начнем рассказ о физике земной ионосферы. Современная физика ионосферы многостороння. Она затрагивает разные вопросы теории и эксперимента, задевает интересы соседних наук – химии, метеорологии, астрофизики, ее проблемы касаются разных высотных областей, от мезосферы на 50 – 60 км до протоносферы на тысячах километров.
Ионые ситуации
Однако при всем разнообразии вопросов в них есть некая общая основа. Она состоит в том, что ионосфера является продуктом деятельности трех основных процессов – ионизации, рекомбинации и динамики (на рисунке – Ио, Ре, Ди). Ионизация непрерывно стремится к увеличению числа заряженных частиц, рекомбинация активно борется за их взаимное уничтожение, а динамика, ничего не создавая и не уничтожая, ведет лишь к перераспределению (правда, в ряде случаев очень важному) заряженных частиц, созданных ионизацией.
В сущности все проблемы ионосферной физики сводятся к тому, что на разных высотах, в разное время, в различных географических областях эти процессы (в силу многих причин) действуют по-разному. Борьба основных процессов – ионизации, рекомбинации и динамики – и создает все разнообразие ситуаций, наблюдаемых в ионосфере. Задача же ионосферной физики состоит в том, чтобы, оперируя этими процессами, объяснить, как и почему те или иные ситуации возникают.
Насколько это удается, какие трудности и проблемы тут возникают – об этом как раз мы и будем вести речь дальше.
Мы начнем с описания двух первых из трех основных процессов и расскажем сначала о тех областях ионосферы, которые образуются как раз в результате борьбы этих двух процессов.
Борьба между ионизацией и рекомбинацией
В принципе все происходит относительно просто. Солнечное излучение в ультрафиолетовой и рентгеновской частях спектра воздействует на нейтральные частицы верхней атмосферы. Происходит процесс ионизации, т. е. электрон отрывается от нейтрального атома или молекулы. Из нейтральной частицы образуются две заряженные: положительная – ион и отрицательная – электрон. В обычных физических символах это записывается так:
Процесс ионизации. Формула (3)
Здесь X – нейтральная частица, на которую воздействует излучение (квант излучения обозначается hν); X+ – получившийся из X положительный ион и е – отрицательно заряженная частица – электрон.
Для того чтобы произошел процесс (3), надо затратить некоторую энергию. Наименьшая энергия, при которой данная частица X может быть ионизирована, называется потенциалом ионизации данной частицы. Мы будем обозначать потенциал ионизации буквой V и выражать в электронвольтах. Очевидно, что не всякое излучение может вызывать ионизацию. Оторвать электрон от частицы X можно, лишь воздействуя на нее излучением, квант которого hv несет энергию, не меньшую, чем Vх (X показывает, что имеется в виду потенциал ионизации именно частицы X). Длина волны λ (или частота ν), для которой справедливо равенство hν=Vx, называется порогом ионизации частицы X.
Если бы в атмосфере действовал только процесс (3), заряженные частицы накапливались бы непрерывно и концентрация ионов и электронов (будем обозначать ее [Х+] и [е]) бесконечно возрастала бы. Но реально этого, конечно, не наблюдается. Как только образовалось некоторое заметное количество Х+ и е, начинается обратный (по отношению к ионизации (3)) процесс – соединение положительного иона с электроном, приводящее к восстановлению нейтральной частицы, "погибшей" в результате реакции (3):
Врезультате реакции (3) получается формула (4)
Такой процесс называется рекомбинацией.
На тех высотах, где динамические процессы отсутствуют или их влияние мало, два противоборствующих процесса – ионизация (3) и рекомбинация (4) – определяют количество заряженных частиц, т. е. строение ионосферы. Так обстоит дело в принципе.
На самом деле за каждой из реакций (3) и (4) стоит целый набор различных реакций ионизации и рекомбинации с образованием и исчезновением разных ионов. Кроме того, между реакциями (3) и (4) появляется еще промежуточный процесс – ионно-молекулярные реакции, в которых заряженные частицы не рождаются и не гибнут, а лишь преобразуются друг в друга. Весь этот набор реакций с участием различных ионов и составляет основу фотохимии ионосферы. История же ионосферной физики за последние 15 – 20 лет есть в основном история построения и изучения этого комплекса процессов.
Как от простой схемы двух процессов типа (3) и (4), так называемого слоя Чепмена, перешли к более сложным схемам, в каком столкновении мнений, борьбе идей рождалось представление о всей совокупности реакций ионизации и рекомбинации (так называемом ионизационно-рекомбинационном цикле процессов) – обо всем этом можно прочесть в книге автора "Химия, атмосфера и космос". Здесь мы постараемся рассказать, как выглядит современная схема ионосферной фотохимии и какие особенности поведения ионосферы эта схема может объяснить.
Свое рассмотрение мы начнем с самой простой области ионосферы, расположенной на высотах 100 – 200 км. Эта область считается простой по нескольким причинам. Во-первых, выше 100 км заведомо нет отрицательных ионов, а они, как мы увидим в главе 5, крайне усложняют ионизационно-рекомбинационный цикл. Во-вторых, один из важнейших динамических процессов – амбиполярная диффузия – начинает серьезно вмешиваться в дела ионов и электронов лишь выше 200 км, а в интересующей нас сейчас области она нам никаких неприятностей причинить не может. Третье преимущество указанной области – доступность ее для небольших геофизических и метеорологических ракет. А такие ракеты поставляют весьма ценные экспериментальные данные. В итоге нам есть с чем сравнивать выводы теории. Мы можем эту теорию контролировать и уточнять по надежным данным наблюдений.
В результате всех этих причин область высот 100 – 200 км (будучи сама по себе значительной и важной частью ионосферы стала чем-то вроде полигона для проверки и отработки фотохимической теории образования ионизации в атмосфере. Построенная для высот 100 – 200 км фотохимия применяется затем и к большим высотам (скажем, область максимума слоя F2), где приходится "мирить" ее с динамическими процессами, и к области D, где на нее накладывается специфика отрицательных ионов и ионов-связок.
Главный источник – Солнце
Основной вопрос ионосферной физики – что является первопричиной образования пояса заряженных частиц в верхней атмосфере Земли – уже давно получил ответ. Первопричина появления ионосферы – ионизующее излучение Солнца.
Что значит "ионизующее"? Очевидно, способное вызвать процесс ионизации. Чуть выше мы говорили, что для того чтобы произошел процесс ионизации (3), квант излучения должен иметь энергию не меньше потенциала ионизации частицы X. В роли X в верхней атмосфере могут выступать основные нейтральные компоненты – N2, O2, О. Наименьший потенциал ионизации из них имеет молекулярный кислород – около 12 эВ. Эта энергия соответствует длине волны 1020 Å. Значит, ионизующим излучением в данном случае будет любое ультрафиолетовое и рентгеновское излучение с λ<1020Å. Это верхняя граница.
С нижней границей положение сложнее. Дело в том, что наиболее коротковолновая часть солнечного излучения (λ<30 Å) проходит большую часть ионосферы, почти не поглощаясь, а значит, и не участвуя в создании ионизации. Только на высотах области D, ниже 100 км, это излучение вступает в игру и отдает свою энергию на образование заряженных частиц. Таким образом, выше 100 км ионизацию производит ультрафиолетовое (100 – 1020 Å) и так называемое мягкое рентгеновское (30 – 100 Å) излучение Солнца.
Энергия солнечного излучения, заключенная в интервале длин волн 100 – 1020 Å, как раз и определяет выше 100 км скорость ионизации – тот важный параметр, который мы будем многократно упоминать в этой книге, обозначая его через q. Поскольку в данном случае речь идет о процессе ионизации излучением, этот процесс часто называют фотоионизацией, а соответствующую скорость– скоростью фотоионизации, чтобы отличить от других ионизационных процессов, вызванных, например, корпускулами.
Поясним, что такое скорость ионизации. Проходя через атмосферный газ, ионизующее излучение взаимодействует с его частицами и производит сам процесс ионизации – отрыв электрона от нейтральной частицы. Эффективность этого процесса, т. е. количество актов ионизации (или, что то же, количество образованных при этом пар ион – электрон) в единице объема (см-3) в единичный интервал времени (с-1), и называется скоростью ионизации q.
От чего же зависит величина q? Из сказанного ясно, что она должна быть тем больше, чем больше количество (поток) квантов ионизующего излучения / и чем выше концентрация нейтральных частиц [М] в единичном объеме. Оказывается (это не так очевидно, но очень важно), величина q зависит также от некоторого параметра σ i, называемого эффективным сечением ионизации. Он характеризует, насколько охотно взаимодействует, производя ионизацию, излучение той или иной длины волны с данным видом частиц (скажем, О2 или N2). Итак, скорость ионизации
q =[M]Iσi(Формула 5)
Это выражение является основой основ всех вычислений скоростей ионизации в земной ионосфере. Реальные формулы для расчетов, конечно, гораздо сложнее, поскольку приходится учитывать изменение интенсивности излучения по спектру, поглощение этого излучения в атмосфере, зависимость σi от длины волны и т. д. Но основной принцип заложен в нашей формуле (5), и, отталкиваясь от нее, мы рассмотрим ряд вопросов.
Первый вопрос: все ли мы имеем, чтобы рассчитать величины q в ионосфере в соответствии с (5)? Из изложенного выше нам известно, что модель атмосферы у нас есть. А значит, есть и [М]. Сечения ионизации исследованы в лаборатории. Здесь тоже не видно проблем. Остается еще величина I – поток ионизующего излучения. Эту величину выражают обычно либо в квантах через квадратный сантиметр в секунду, характеризуя количество квантов, способных произвести ионизацию, либо в эргах тоже через Квадратный сантиметр в секунду, характеризуя общую энергию, которую несет указанное количество квантов. Эрги используются чаще, однако для обсуждения проблем ионизации и рекомбинации удобнее кванты. Так вот, величина I и есть самое сложное место расчетов q.
В книге автора "Химия, атмосфера и космос" в разделе "Как светит Солнце?" подробно описана история того, как в конце пятидесятых – начале шестидесятых годов менялись взгляды на величину I. Не повторяя здесь этой увлекательной истории, отметим лишь, что взгляды на энергию солнечного ионизующего излучения менялись очень сильно. Потоку ионизующего излучения I разные авторы в разное время приписывали значения от 0,1 до 100 эрг/(см2×с). Это очень широкая "вилка". Как ни как разница в тысячу раз! Не многие из аэрономических параметров могут похвастаться таким диапазоном неопределенности.
К концу 60-х годов, однако, дело более или менее прояснилось. Измерения спектра ультрафиолетового излучения Солнца были проведены на ракетах американским ученым Хинтереггером и дали значения I около 3 эрг/(см2×с). К таким же значениям привела после всех уточнений и теория ионизационно-рекомбинационного никла в ионосфере (мы расскажем об этом далее). Именно этим временем относительного благополучия в вопросе об I и кончается история вопроса об интенсивности коротковолнового излучения Солнца в книге автора "Химия, атмосфера и космос". На стр. 25 мы читаем:
"Можно ли считать, что все в порядке? В первом приближении, несомненно, да. Все три оценки количества актов ионизации (или рекомбинации) в земной ионосфере – по энергии коротковолнового излучения Солнца, по скорости процессов рекомбинации и по эффективности ионно-молекулярных реакций – дают близкие между собой (или, как принято говорить, одного порядка) результаты".
Куда уж лучше! После "вилки" в 3 порядка величины – "близкие результаты". Но такое благополучие длилось недолго. Уже в 1969 году Хинтереггер пересмотрел свои экспериментальные данные и уменьшил величину I примерно до 2 эрг/(см2×с) при средней солнечной активности.