355 500 произведений, 25 200 авторов.

Электронная библиотека книг » А. Дроздов » Органическая химия » Текст книги (страница 2)
Органическая химия
  • Текст добавлен: 10 октября 2016, 06:20

Текст книги "Органическая химия"


Автор книги: А. Дроздов


Соавторы: М. Дроздова

Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 2 (всего у книги 7 страниц) [доступный отрывок для чтения: 2 страниц]

10. Национальная и международная номенклатура

Еще в середине XIX в. отдельные химики пытались создать такую номенклатуру, которая говорила бы о строении называемых веществ; такую номенклатуру называют рациональной. При этом, например, названия углеводородов производились от названий первого представителя данной группы углеводородов. Так, для ряда метана основой наименования служило название метана. Например, один из изомеров пентана можно назвать диметилэтилметан, т. е. это вещество можно представить как производное метана, у которого два атома водорода замещены метальными группами СН3, а один атом водорода – этиль-ной группой С2Н5.

Международная номенклатура

Желая создать наиболее рациональную номенклатуру органических соединений, которая была бы принята во всех странах мира, крупнейшие химики – представители химических обществ разных стран – собрались в 1892 г. в Женеве (Швейцария). На этом совещании была выработана систематическая научная номенклатура, которую теперь обычно называют женевской или международной номенклатурой.

Для того чтобы назвать какое-либо соединение по женевской номенклатуре, руководствуются следующими правилами.

Рассматривая структурную формулу соединения, выбирают наиболее длинную цепь атомов углерода и нумеруют атомы, начиная с того конца, к которому ближе стоит заместитель (боковое ответвление).

Соединение рассматривается согласно принципам женевской номенклатуры как производное нормального углеводорода, имеющего такую же, соответствующую перенумерованной цепь.

Место заместителя (ответвления цепи) обозначают цифрой, соответствующей номеру атома углерода, у которого стоит заместитель, затем называют заместитель и, наконец, углеводород, от которого производят все соединение по наиболее длинной перенумерованной цепи.

В тех случаях, когда в цепи имеется несколько ответвлений, положение каждого указывается отдельно соответствующими цифрами, и каждый заместитель называется особо. Если соединение имеет несколько одинаковых заместителей, например две метильные группы, то после двух цифр, обозначающих их места, говорят «диметил» (от греч. ди – «два»); при наличии трех метильных групп говорят «три-метил» и т. д.

После создания женевской номенклатуры неоднократно пытались ее усовершенствовать – дополнить, исправить. Так, в г. Льеже (Бельгия) рассматривались «Льежские правила», которые, однако, не были приняты многими химиками.

В 1957 г., а затем в 1965 г. съездом Международного союза теоретической и прикладной химии International Union of Pure and Applied Chemisty, сокращенно IUPAC (или ИЮПАК), были утверждены правила номенклатуры органических соединений. Эти правила в основном соответствуют женевской номенклатуре, но вносят в нее некоторые поправки. В дальнейшем при изложении Международной номенклатуры различных классов соединений учтены и рекомендации ИЮПАК.

11. Понятие о конформациях

Метальные и метиленовые группы в углеводородах (а также в других соединениях) могут свободно вращаться вокруг соединяющих их одинарных связей, как вокруг осей, вследствие чего атомы водорода могут занимать различное пространственное положение. Возникающие при этом различные формы носят название конформации или конформеров. Так, например, этан вследствие свободного вращения ме-тильных групп может существовать в виде бесчисленного числа конформации. Наименее устойчивой конформацией является так называемая заслоненная конформация, в которой атомы водорода двух метильных групп находятся один над другим. Нестойкость этой конформации обусловлена малыми расстояниями между атомами водорода, которые стремятся оттолкнуться друг от друга. При отталкивании этих атомов заслоненная конформация этана переходит в другие и, наконец, превращается в наиболее стойкую конформацию, в которой атомы водорода одной метальной группы максимально удалены от атомов водорода другой метильной группы. Эта конформация называется заторможенной, потому что при свободном вращении метальных групп наибольшее время молекула метана находится именно в этой конформации.

Углеводороды и другие органические соединения, содержащие четыре и более углеродных атомов, могут находиться в различных конформациях, обладающих не только различным положением атомов водорода, но и различной формой углеродной цепи. Так, например, цепь н-бутана может иметь зигзагообразную форму или форму полукольца.

Конформеры отличаются от изомеров прежде всего тем, что они образуются самопроизвольно, без разрыва химических связей, соединяющих атомы.

Выделить какую-либо одну конформацию практически невозможно, так как вращение атомных групп происходит довольно быстро и одна конформация переходит в другую. Составить достаточно точные представления о конформациях удалось лишь при помощи тонких физических методов, таких как, например, метод ЯМР (Ядерного магнитного резонанса).

Общая формула предельных углеводородов. В органической химии состав каждой группы соединений можно выразить общей молекулярной формулой.

Выведение общей формулы предельных углеводородов. Нужно рассмотрим формулу какого-либо углеводорода с неразветвленной цепью. Как видно из формулы, на каждый атом углерода приходится по два атома водорода, если не считать двух атомов водорода, связанных с крайними атомами углерода. Если обозначить число атомов углерода в молекуле углеводорода буквой N, то число атомов водорода будет равно величине 2N, к которой нужно прибавить еще 2 (третьи атомы водорода у крайних атомов углерода). Таким образом, общая формула предельных углеводородов СпН2П + 2.

Выведенная общая формула СпН2П + 2 будет выражать состав и всех предельных углеводородов с разветвленной цепью, так как изосоединения отличаются от соответствующих нормальных соединений лишь порядком соединения атомов.

Общая формула одновалентных радикалов предельных углеводородов – алкилов – СпН2П + 1.

12. Природные источники предельных углеводородов

В природе широко распространены газообразные, жидкие и твердые углеводороды, в большинстве случаев встречающиеся не в виде чистых соединений, а в виде различных, иногда очень сложных смесей. Это природные газы, нефть и горный воск.

Природные газообразные смеси углеводородов. В очень многих местах земного шара из трещин земли выделяется горючий, так называемый земляной или нефтяной газ, состоящий преимущественно из метана. В России такие месторождения газа имеются в Грозном, Дагестане, Саратове, Тюменской области и других местах. Нефтяной газ, выделяющийся непосредственно из земли, помимо метана содержит пары бензина, который может быть из него выделен. Природный газ наряду с получаемым из нефти служит сырьем для промышленности синтетических материалов.

«Болотный» и «рудничный» газы, состоящие почти исключительно из метана, также являются природными источниками предельных углеводородов. Они образуются из различных растительных органических остатков, подвергающихся медленному разложению при недостатке кислорода (например, на дне болот).

Нефть

Нефть представляет собой жидкость от желто– или светло-бурого до черного цвета с характерным запахом, состоящую преимущественно из смеси углеводородов; в состав нефти входят также в небольшом количестве вещества, содержащие кислород, серу и азот.

Нефть легче воды: плотность различных видов нефти колеблется от 0,73 до 0,97 см.

В зависимости от месторождения нефть имеет различный состав (как качественный, так и количественный). Больше всего предельных углеводородов содержится в нефти, добываемой в штате Пенсильвания (США).

Происхождение нефти. О происхождении нефти нет единого мнения. Некоторые ученые, к которым принадлежал Д. И. Менделеев, предполагала, что нефть имеет неорганическое происхождение: она возникла при действии воды на карбиды металлов. Другие ученые, например Энглер, считали, что нефть имеет органическое происхождение, т. е. образовалась в результате медленного разложения различных останков умерших животных и остатков погибших растений при недостаточном доступе воздуха. В последующие годы в многочисленных образцах нефти были обнаружены различные порфирины – соединения, образующиеся при разложении зеленого вещества растений – хлорофилла и красящего вещества крови – гемоглобина. Это доказывает участие в образовании нефти растений и животных.

Выдвигаются и более сложные теории, согласно которым основным источником образования нефти являлись останки животных и растений; образовавшаяся из них «первичная нефть» подвергалась дальнейшим вторичным изменениям, заключающимся главным образом в присоединении водорода – гидрировании. Эти процессы могли протекать при участии неорганических катализаторов.

13. Переработка нефти

Если нефть постепенно нагревать в перегонном аппарате, то вначале она переходит в парообразное состояние мере повышения температуры, перегоняются углеводороды, имеющие все более и более высокую температуру кипения. Таким образом, можно собрать отдельные части или, как говорят, фракции нефти. Обычно получают три основные фракции такие как:

1) фракция, собираемая до 150 °C и обозначаемая как газолиновая фракция, или фракция бензинов; эта фракция содержит углеводороды с числом атомов углерода от 5 до 9;

2) фракция, собираемая в пределах от 150 до 300 °C и после очистки дающая керосин, содержит углеводороды от С9Н20 до С16Н34;

3) остаток нефти, называемый мазутом, содержит углеводороды с большим числом атомов углерода – до многих десятков.

Каждая из этих трех фракций подвергается более тщательной разгонке для получения фракций менее сложного состава. Так, газолиновую фракцию разгоняют на:

1) н-пентан, кипящий при 38 °C (содержится главным образом в пенсильванской нефти);

2) газолин, или петролейный эфир (фракция с температурой кипения от 40 до 70 °C);

3) собственно бензин (фракция с температурой кипения от 70 до 120 °C); различают несколько видов бензина: авиационный, автомобильный и т. д.;

4) лигроин (от 120 до 140 °C).

Мазут разделяют на фракции, некоторые фракции, перегоняющиеся из мазута без разложения выше при температуре 300 °C, называются соляровыми маслами. Они применяются в качестве моторного топлива. Из солярового масла путем тщательной очистки получают также вазелиновое масло, применяющееся в медицине.

Во избежание разложения веществ при температуре свыше 300 °C при разделении мазута на фракции применяют перегонку с водяным паром и перегонку в вакууме. Из мазута путем такого разделения и очистки фракций получают, помимо соляровых масел, различные смазочные масла, вазелин и парафин.

Вазелин, получаемый из мазута путем перегонки с перегретым водяным паром, представляет собой смесь жидких и твердых углеводородов и широко применяется в медицине в качестве основы для мазей.

Парафин – смесь твердых углеводородов – выделяется путем их кристаллизации из так называемой парафиновой массы – смеси твердых и жидких углеводородов, которые получаются при перегонке с водяным паром мазута из некоторых видов нефти, богатых соответствующими твердыми углеводородами. Парафин находит в настоящее время широкое применение не только в промышленности, но и в медицине (парафинотерапия). Остаток после отгона из мазута упомянутых фракций, называемый гудроном или нефтяным пеком, после некоторой обработки находит широкое применение в дорожном строительстве (нефтяной или искусственный асфальт).

14. Крекинг-процесс, озокерит

Крекинг-процесса (от англ. крекинг – «расщепление»). Сущность крекинг-процесса, или крекирования тяжелых фракций нефти, заключается в том, что нефтепродукты подвергаются действию высокой температуры и давления. Крупные молекулы углеводородов с большим числом углеродных атомов расщепляются на более мелкие молекулы предельных и непредельных углеводородов, тождественные или близкие содержащимся в бензине, и газы крекинга, состоящие главным образом из газообразных непредельных углеводородов с небольшим числом углеродных атомов. Газы крекинга подвергают дополнительной обработке, при которой молекулы соединяются в более крупные (происходит полимеризация), в результате чего также получается бензин. Крекинг нефтепродуктов с полимеризацией отходящих газов крекинга повышает выход бензина из сырой нефти до 65–70 %, т. е. приблизительно в 3 раза.

Горный воск, или озокерит, – твердая природная смесь углеводородов. Путем переплавления и очистки из озокерита приготовляют церезин, который в ряде случаев служит хорошим заменителем воска.

Природными источниками предельных углеводородов являются также некоторые продукты сухой перегонки дерева, торфа, бурого и каменного углей, горючих сланцев.

Синтетические способы получения предельных углеводородов.

1. Присоединение водорода (гидрирование) в присутствии катализаторов – платины и палладия – к непредельным углеводородам.

2. Реакция отнятия галогена от моногалогено-производных при помощи металлического натрия с соединением радикалов (реакция Вюрца).

3. Разложение солей соответствующих кислот (путем нагревания с NaOH):

CnH2n + 1 COONa + NaOH —» CnH2n + 2 + Na2CO3.

Физические свойства

Предельные углеводороды с числом атомов углерода от 1 до 4 при обычных условиях представляют собой газы; углеводороды с числом атомов от 5 до 15 – жидкости; углеводороды с числом атомов 16 и выше представляют собой твердые тела. Температуры плавления и кипения углеводородов повышаются с укрупнением молекул. Здесь отчетливо видно проявление закона диалектики о переходе количества в качество.

Предельные углеводороды практически не растворимы в воде; в большинстве органических растворителей они растворяются.

Первые представители ряда предельных углеводородов – метан и этан – не обладают запахом. Легколетучие низшие углеводороды обладают запахом бензина. Высшие представители этого ряда, входящие в состав нефтяных масел и парафина, также не имеют запаха, обладая очень малой летучестью.

Химические свойства

В начале главы уже указывалось, что предельные углеводороды при обычных условиях обладают большой химической инертностью.

15. Взаимодействие пределов углеводородов с галогенами

Галогены не присоединяются к предельным углеводородам. Однако вступают с ними в реакции замещения, особенно легко на солнечном свету. При этом галогеном может последовательно заместиться не один, а несколько атомов водорода. Так, метан, взаимодействуя с хлором, может дать несколько различных продуктов замещения:

СН4 + С → СН3СI1 + НСI1;

хлористый метил

СН3СI + С12 → СН2СI12 + НСI1 и т. д.

хлористый метилен

Углеводороды, в которых один или несколько атомов водорода замещены галогеном, называются га-логенопроизводными.

Предельные углеводороды менее стойки в условиях высокой температуры, особенно в присутствии различных катализаторов.

Окисление предельных углеводородов при повышенной температуре. Первые представители ряда метана окисляются наиболее трудно; однако высшие предельные углеводороы, входящие в состав парафина, уже при 100–160 °C можно окислить кислородом с образованием жирных кислот. Помимо жирных кислот, из углеводородов получают и многие другие вещества, содержащие кислород, окисляя различными методами предельные углеводороды.

Расщепление углеродной цепи предельных углеводородов при высокой температуре и давлении. При 450–550 °C идут реакции крекинг-процесса. Наиболее важной из них является реакция расщепления крупных молекул предельных углеводородов на более мелкие молекулы предельных и непредельных углеводородов. Отдельные представители

Метан (СН4) составляет 86–90 % «земляного», «болотного» и «рудничного» газа; в больших количествах он входит в состав «светильного» газа (приблизительно 35 %); в растворенном состоянии содержится в нефти.

Метан образуется из клетчатки под влиянием микроорганизмов («метановое брожение»), он входит в состав газов кишечника жвачных животных и человека.

Синтетический метан можно получить несколькими способами, например непосредственным взаимодействием углерода и водорода при высокой температуре.

Метан не обладает ни цветом, ни запахом. При горении он дает почти бесцветное пламя со слабым синим оттенком.

При смешивании метана с воздухом образуется крайне опасная взрывчатая смесь.

В воде метан плохо растворим.

Изооктан (C8H18) (2,2,4-триметилпентан) – очень ценная составная часть авиационного бензина, считается стандартным жидким горючим.

16. Непредельные (ненасыщенные) углеводороды

Непредельными, или ненасыщенными, углеводородами называются углеводороды, содержащие меньшее число атомов водорода, чем предельные углеводороды с тем же числом атомов углерода, и резко отличающиеся от предельных своей способностью легко вступать в различные реакции присоединения (например, они легко присоединяют галогены).

В зависимости от содержания водорода непредельные углеводороды делят на различные подгруппы, или ряды. Состав соединений, входящих в различные подгруппы, удобно выражать общими формулами.

Если состав предельных углеводородов обозначают общей формулой СпН2n + 2, то различные ряды непредельных углеводородов можно выразить общими формулами: CnH2n, CnH2n – 2 и т. д.

В данном курсе будут рассматриваться лишь непредельные углеводороды, имеющие формулу СпH2n, – алкены, или олефины, или углеводороды ряда этилена, и имеющие формулу СпH2n – 2, к которым относятся диолефины, или диеновые углеводороды, а также углеводороды ряда ацетилена.

1. Углеводороды ряда этилена, или алкены (олефины).

Углеводороды ряда этилена, имеющие общую формулу СпH2n, получили название по первому простейшему представителю этилену (С2Н4). Другое название этой группы веществ – олефины – возникло исторически: при первоначальном открытии и знакомстве с этиленом было обнаружено, что он, соединяясь с хлором, образует жидкое маслянистое вещество (хлористый этилен (С2Н4СI12)), что и послужило поводом назвать этилен gaz olefiant (с лат. – «масло-родный газ»). Название «олефины» получило более широкое употребление и в нашей стране. Оле-фины называют также алкенами.

2. Строение, номенклатура и изомерия Этилен С2Н4 можно получить из хлористого этила (С2Н5СI1), отняв от него молекулу НСI1 действием щелочи.

Допущение существования двойной связи в олефи-нах соответствует основному положению теории строения о четырехвалентности углерода и хорошо объясняет присоединение галогенов и других веществ к двум соседним углеродным атомам за счет освобождения валентностей при разрыве двойной связи.

По современным представлениям, как уже упоминалось, две связи, соединяющие два ненасыщенных углеродных атома, неодинаковы: одна из них является s-связью, другая p-связью. Последняя связь менее прочна и разрывается при реакциях присоединения.

О неравноценности двух связей в непредельных соединениях говорит, в частности, сравнение энергии образования простой и двойной связей. Энергия образования простой связи равна 340 кДж/моль, а двойной – 615 кДж/моль. Таким образом, на образование двойной связи затрачивается не вдвое больше энергии, чем при образовании одинарной s-связи, а всего лишь на 275 кДж/моль больше. Естественно, что и для разрушения p-связи затрачивается меньше энергии, чем для разрушения s-связи.

17. Изомерия, природные источники и способы получения олефинов

Изомерия олефинов зависит от изомерии цепи атомов углерода, т. е. от того, является ли цепь нераз-ветвленной или разветвленной, иот положения двойной связи в цепи. Существует еще и третья причина изомерии олефинов: различное расположение атомов и атомных групп в пространстве, т. е. стереоизо-мерия. Однако этот вид изомерии будет рассмотрен в дальнейшем на примере соединений с двойной связью.

Для обозначения места двойной связи (а также места ответвлений в цепи) согласно международной номенклатуре нумеруют атомы углерода наиболее длинной цепи, начиная с того конца, к которому ближе стоит двойная связь. Таким образом, два изомера бутилена, обладающие неразветвленной цепью, будут называться 1-бутен и 2-бутен.

По женевской номенклатуре приоритет отдавался углеродному скелету, и нумерацию в формуле данного пентена начинали слева, поскольку ответвление углеродной цепи ближе к левому концу формулы. По номенклатуре приоритет отдается функциональным группам, поэтому нумерацию начинают с правого конца, к которому ближе двойная связь, определяющая главные свойства (функции) олефинов.

Радикал Н2С=СН-, производимый от этилена, называют обычно винилом; радикал Н2С=СН-СН2-, производимый от пропилена, называют аллилом.

Природные источники и способы получения олефинов

Этилен и его гомологи в очень небольшом количестве встречаются в природных газах, а также в нефти (в растворенном состоянии). Олефины, как упоминалось, образуются при крекинге нефти, а также в небольшом количестве при сухой перегонке дерева и каменного угля.

Отнятие воды от предельных спиртов – дегидратация. Это один из наиболее общих способов получения олефинов.

В промышленных условиях пары спирта при 350–500 °C пропускают над катализатором, в качестве которого используют окись алюминия, графит или некоторые другие вещества.

В лабораторных условиях для получения олефинов нагревают спирты с водоотнимающими веществами, например концентрированной серной кислотой, хлоридом цинка и т. д.

При применении серной кислоты реакция отщепления воды идет в две стадии:

1) спирт при взаимодействии с серной кислотой образует так называемый сложный эфир, например из этилового спирта образуется этилсерная кислота;

2) этилсерная кислота при нагревании разлагается, образуя олефин и серную кислоту.

Рассмотренный механизм реакции не является единственным, так как не только серная кислота, но и другие кислоты, как, например, соляная, которая не может образовать легко разлагающегося промежуточного продукта типа этилсерной кислоты, вызывают дегидратирование спиртов (отнятие воды). Установлено, что механизм образования этиленов из спиртов в известной степени зависит от строения спирта.


    Ваша оценка произведения:

Популярные книги за неделю