355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Кика » Человек и его вселенная. Издание второе переработанное » Текст книги (страница 2)
Человек и его вселенная. Издание второе переработанное
  • Текст добавлен: 28 августа 2020, 21:30

Текст книги "Человек и его вселенная. Издание второе переработанное"


Автор книги: Кика



сообщить о нарушении

Текущая страница: 2 (всего у книги 3 страниц)

1.4.1.2. Эфир

В отличие от любых объектов, характеризующихся ограниченными пространственными размерами, эфир заполняет собой всё реальное пространство. На основании принципа дискретности можно заключить, что эфир, то есть реальное пространство, имеет квантовую структуру. Эфир можно сравнить с неочищенным от сот мёдом. Как соты являются формой, а мёд содержанием, так и реальное пространство является формой, а эфир его содержанием.

1.4.1.2.1. Кванты пространства и расстояния

Кванты пространства, по всей вероятности, должны обеспечивать выполнение следующих трёх условий:

– тождественность формы и размеров квантов,

– возможность заполнения квантами всё реальное пространство без пустот,

– обеспечение контактирования квантов с возможно большим количеством соседних квантов.

Для выявления кванта пространства, удовлетворяющего всем перечисленным условиям, представим пространство, плотно заполненное одинаковыми шарами, как показано на рисунке 1.

Рисунок 1. Пространство, заполненное шарами

В таком случае каждый шар будет контактировать с 12 –ю соседними шарами, но между ними, разумеется, будут и пустоты (см. рисунок 2).

Рисунок 2. 12 смежных сфер, соприкасающихся со сферой

Если воздействовать со всех сторон одинаковым внешним давлением на такое образование, но из пластичных шаров, то благодаря их пластичности, пустоты исчезнут, а шары приобретут форму двенадцатигранника с равными гранями в форме ромбов, то есть форму ромбододекаэдра, как показано на рисунке 3.

Рисунок 3. Квантованное пространство

Заполнить пространство без пустот можно и другими одинаковыми фигурами, например кубами, параллелепипедами или их частями, однако только ромбододекаэдр может обеспечить контактирование с 12-ю соседними ромбододекаэдрами, что является максимально возможным количеством контактов при перечисленных выше условиях.

Если расположить ромбододекаэдр таким образом, чтобы две его противоположные вершины, являющиеся общей точкой четырёх граней, оказались на вертикальной линии (см. рисунок 4), то у него можно выделить три зоны, каждая из которых состоит из четырёх граней:

– верхнюю зону (на цветном рисунке она красная), назовём её северной, или положительной;

– среднюю зону (на цветном рисунке она жёлтая), назовём её экваториальной, или нейтральной;

– нижнюю зону (на цветном рисунке она зелёная), назовём её южной, или отрицательной зоной.

Рисунок 4. Зоны кванта пространства

Расстояние между центрами двух соприкасающихся верхней и нижней зонами квантов пространства является минимально возможным расстоянием и называется квантом расстояния. На рисунке 5 квант расстояния показан прямой линией с шарами на её концах (на цветном рисунке эта линия красного цвета).

Рисунок 5. Квант расстояния

1.4.1.2.2. Сети квантов пространства

Аналогично пчелиным сотам, состоящим из рядов ячеек, изолированных друг от друга гранями, реальное пространство состоит из рядов квантов пространства, каждый квант которого изолирован от соседних квантов гранями. Ряды квантов, находящиеся в одной плоскости, образуют слой, в котором все кванты касаются соседних квантов этого слоя гранями своей средней, то есть экваториальной, зоны. На основании принципа раздвоенности можно предположить, что существуют два типа квантов пространства (условно назовём их, например, белыми и чёрными) и во всех слоях пространства они расположены в шахматном порядке.

Как видно из рисунка 6, в пределах всего слоя однотипные кванты пространства не контактируют друг с другом своими гранями, а контактируют исключительно с квантами противоположного типа.

Рисунок 6. Слой квантов пространства

Очевидно, что в двух соседних слоях квантов пространства верхний слой южными зонами своих квантов контактирует с северными зонами квантов нижнего слоя. В этом случае неминуемо каждый квант одного слоя будет контактировать своими гранями с двумя однотипными квантами другого слоя, образуя две сети сообщающихся квантов пространства (см. рисунок 7).

Рисунок 7. Связь между квантами одного типа в двух смежных слоях

Если в первых двух слоях квантов пространства цвета квантов изменить на противоположные и добавить их к первым двум в качестве третьего и четвёртого слоёв, то получим четырёхслойный фрагмент пространства. В таком фрагменте пространства каждый квант внутренних слоёв квантов пространства будет контактировать своими гранями с четырьмя однотипными квантами: двумя из верхнего слоя и двумя из нижнего слоя, как видно на рисунке 8. Реальное же пространство состоит из множества таких четырёхслойных фрагментов, расположенных одна на другой как многослойный пирог.

Рисунок 8. Четырехслойный фрагмент пространства

Таким образом, реальное пространство состоит из двух переплетающихся сетей квантов пространства (далее называемых сетями). На рисунке 9 изображены две сети, в котором ради наглядности кванты пространства заменены квантами расстояния (на цветном рисунке они показаны красным и синим цветами, а на черно-белом рисунке красные линии можно определить по шарам на их концах). Условно их также можно назвать положительной и отрицательной сетями, хотя они ничем не отличаются друг от друга, кроме пространственной разобщённости. Так как эти две пространственные сети не имеют ни одного общего кванта пространства, то попасть движущейся точке из одной пространственной сети в другую невозможно.

Рисунок 9. Пространственные сети

Если центры квантов пространства этих пространственных сетей соединить плавной пространственной линией, то вместо ломаных линий получатся волновые и винтовые линии, как это видно из рисунка 10. Для большей наглядности на рисунке 10 представлена лишь одна из двух сетей с двумя волновыми линиями: красного (проходящего через шары) и чёрного цветов и двумя винтовыми линиями: оранжевого (проходящего через шары) и синего цветов, расположенными во взаимно перпендикулярных направлениях.

Рисунок 10. Возможные траектории движения точки в пространственной сети

В пространственных сетях не могут размещаться прямые линии. Признание такой структуры реального пространства позволяет заключить, что прямые линии в природе являются лишь идеализацией волновых или винтовых линий.

1.4.1.2.3. Кванты эфира и потенциальной энергии

Как мёд состоит из малых порций, заключённых в ячейках пчелиных сот, так и эфир состоит из квантов эфира, заключённых в квантах пространства. Квант эфира представляет собой тонкую вибрирующую материю, обладающую высокой потенциальной энергией, аналогично упругому шару, сжатому в ладони. Как и шар давит на ладонь, квант эфира вызывает давление q на соседние кванты эфира. Это давление стремится переместить соседние кванты эфира в более удалённые кванты пространства.

Как в пчелиных сотах можно обнаружить пустые ячейки, так и в эфире могут встретиться кванты пространства, не содержащие квантов эфира, то есть с нулевой энергией. Назовём их вырожденными квантами пространства.

Если под плотностью эфира подразумевать отношение суммарной энергии квантов эфира к занимаемому этими квантами эфира объёму пространства, то до зарождения материи в реальном пространстве плотность эфира имела максимальное значение p, так как все кванты пространства содержали кванты эфира с энергией E0. Поэтому, несмотря на огромное взаимное давление квантов эфира, у них не было возможности перемещаться в соседние кванты пространства. Кванты эфира не обладают кинетической энергией, так как они не перемещаются и не имеют массы в обычном её представлении (масса в кванте эфира существует лишь потенциально).

Энергия кванта эфира является исключительно потенциальной, аналогично жизни, заложенной в яйцеклетке. Величина этой энергии равна минимально возможному значению потенциальной энергии. Назовём эту величину квантом потенциальной энергии. Эта энергия проявляется, то есть превращается в кинетическую, только после воздействия на неё праны, аналогично появлению новой жизни только после оплодотворения яйцеклетки.

1.4.2. Образование квантов материи

1.4.2.1. Кванты материи, массы и кинетической энергии

Пробуждённый праной квант эфира, расположенный в кванте пространства, сильно уплотняется, превращаясь в квант материи, при этом энергия кванта эфира E0 преобразуется в массу кванта материи m0. Значение массы кванта материи является минимально возможной. Назовём её квантом массы. Но на этом действие праны на эфир не заканчивается. Прана придаёт кванту материи кинетическую энергию с минимально возможным значением равным одному кванту кинетической энергии e0. Используя формулу Эйнштейна об эквивалентности массы и энергии, мы можем сделать вывод, что суммарная энергия праны и кванта эфира E, масса кванта вещества m0 и его кинетическая энергия e0 связаны с помощью следующего уравнения:

Другими словами, суммарная энергия праны и кванта эфира E частично превращается в массу m0 и частично в кинетическую энергию e0 кванта вещества.

Поскольку прана всегда имеет какое-то направление, то она в пространственной сети по траектории, соответствующей этому направлению, находит следующий ближайший невырожденный квант пространства и благодаря кванту кинетической энергии за ничтожно малый промежуток времени осуществляет крайне необходимое для жизни космоса действие.

Суть этого действия заключается в одновременном преобразовании состояния содержимого в двух квантах пространства. В найденном невырожденном кванте пространства прана преобразует квант эфира в квант материи, а в первом – квант материи преобразуется обратно в квант эфира. Затем происходит аналогичный процесс одновременного преобразования содержимого между вторым квантом и следующим невырожденным квантом пространства и так далее. При этом создаётся впечатление обмена содержимым в двух квантах пространства, хотя на самом деле, исходя из принципа дискретности, такой обмен происходить не может.

1.4.2.2. Природа движения

Если последовательно включать и выключать электрические лампочки, расположенные по некоторой линии близко друг к другу, то создаётся впечатление движения по этой линии светящейся точки. Аналогично последовательное преобразование содержимого квантов пространства создаёт впечатление движения кванта материи. Кроме того, это преобразование происходит в течение чрезвычайно малого промежутка времени, поэтому создаётся ещё и впечатление непрерывности движения кванта материи. Поскольку само движение и его непрерывность не являются реальными, то в дальнейшем под движением мы будем подразумевать лишь кажущееся движение. Точно также кажутся непрерывными (не дискретными) и другие формы существования материи и её свойства: пространство, энергия, время, трение, инерция и так далее.

Структура пространства эфира позволяет кванту материи двигаться в любом направлении, однако в зависимости от направления движения будет меняться траектория его движения. Квант материи "попадает" в каждый квант пространства из одного из четырёх однотипных квантов пространства, сообщающихся с ним. Затем этот квант материи "переходит" в один из трёх других однотипных квантов пространства, а именно в тот, "переход" в который обеспечит наименьшее отклонение от заданной траектории движения. Иными словами, "переход" произойдёт в тот квант пространства, при котором проекция отрезка прямой, соединяющей центры этих квантов пространства, на направление движения будет наибольшая из трёх возможных проекций.

В общем случае траектория движения кванта материи представляет собою некоторую пространственную кривую, состоящую из чередующихся участков винтовой и волновой линий. В частных случаях траектория движения может оказаться исключительно винтовой линией, либо – исключительно волновой линией. Из вышеизложенного можно сделать очень важный вывод о том, что для любого движения необходима среда:

Как нет явления без сути,

Так нет движения без среды.

1.4.2.3. Квант времени

Квант времени – это минимальный интервал времени, который требуется для осуществления самого кратковременного процесса в материальном мире. Ни одно действие в материальном мире не может быть осуществлено за время, меньшее чем один квант времени. За один квант времени происходит смена состояния в двух соседних квантах пространства. В одном кванте пространства квант материи превращается в квант эфира, а в другом, ближайшем по траектории движения кванта материи, квант эфира превращается в квант материи. При отсутствии вырожденных квантов пространства, скорость кванта материи по траектории движения и его кинетическая энергия являются постоянными.

Так как при разных направлениях движения траектории отличаются, то при постоянной скорости кванта материи по траектории его скорость по направлению окажется зависящей от направления. Наибольшая скорость по направлению получается при волновой траектории, а наименьшая – при винтовой. Это свидетельствует об анизотропности пространства.

Однако анизотропность пространства экспериментально не подтверждается. Наоборот, опыт показывает, что пространство будто является изотропным. Эта иллюзия изотропности нуждается в объяснении.

1.4.2.4. Анизотропность пространства

Изотропным пространство не может быть из-за его квантовой структуры. Что касается практики восприятия пространства изотропным, то объясняется это следующим образом. Поскольку масса квантов материи постоянна, то скорость движения кванта материи по его траектории зависит исключительно от кинетической энергии. В процессе материализации кванты материи получают одинаковую по величине кинетическую энергию. Но они в зависимости от траектории движения тратят различные доли своей энергии на преодоление инерции. Минимальные затраты энергии получаются при движении кванта материи по винтовой линии, так как в этом случае происходит минимальное изменение вектора скорости. А наибольшие затраты энергии получаются при движении по волновой линии, поскольку при такой траектории движения изменения вектора скорости значительны.

Поскольку при разных траекториях движения кванты материи тратят разные значения своей энергии, то зависящая от оставшейся энергии скорость квантов по траектории их движения оказывается разной, что приводит к одинаковым скоростям движения по всем направлениям пространства. Это обстоятельство и создаёт иллюзию изотропности пространства.

1.4.2.5. Квант трения

В процессе материализации, когда прана воздействует на квант эфира, квант эфира оказывает некоторое сопротивление пране, подобно трению, которое испытывает движущееся в материальной среде тело. Это минимальное сопротивление является квантом трения. Наличие трения не позволяет кванту материи двигаться по траектории своего движения с бесконечной скоростью, поэтому максимальная скорость движения кванта материи и материальных частиц ограничена.

Кроме того, трение приводит и к потере энергии кванта материи, а следовательно и энергии света.

1.4.3. Образование материальных частиц и тел

1.4.3.1. Клеточная структура материи

Если два движущихся кванта материи в соответствии с траекториями их движения должны одновременно "попасть" в один и тот же квант пространства, в котором находится квант эфира, то в этом кванте пространства появится материальная частица с удвоенной массой. Скорость этой материальной частицы будет равна векторной сумме скоростей слившихся квантов материи. В соответствии с законом сохранения энергии, квант эфира может восстановиться только в одном из двух квантов пространства, где находились кванты материи, а другой квант пространства остаётся свободным, то есть без квантов материи и кванта эфира. Иными словами, он становится разряженным или вырожденным. Так образуется вырожденный квант пространства, примыкающий к кванту пространства с удвоенной массой. При дальнейшем движении материальной частицы с удвоенной массой происходит "переход" частицы с удвоенной массой в следующий по траектории движения квант пространства, квант эфира восстанавливается в вырожденном кванте пространства, а квант пространства, в котором находилась материальная частица с удвоенной массой, становится вырожденным.

Таким образом, вырожденный квант пространства оказывается рядом с движущейся материальной частицей с удвоенной массой. С дальнейшим ростом массы движущейся материальной частицы образуются всё новые и новые вырожденные кванты пространства, примыкающие к увеличенной материальной частице, создавая всё большее разряжение эфира вокруг неё. Как будет показано далее, это разряжение эфира является единственной причиной взаимодействия между любыми объектами (частицами микромира и телами макромира).

Наконец, наступает такой момент, когда образовавшаяся материальная частица не может разместиться в кванте пространства. Тогда последующий рост материальной частицы сопровождается заполнением квантами материи соседнего кванта пространства, что в свою очередь замедлит движение полученной материальной частицы, так как для её движения необходимо осуществлять смену состояния не в одной, а уже в двух парах квантов пространства.

Так с ростом материальной частицы снижается максимально допустимая скорость её движения и образуется клеточная структура материи, в которой роль материальной клетки выполняет квант пространства, заполненный квантами материи. При дальнейшем росте массы материальной частицы растёт и количество материальных клеток, занимаемых увеличенной частицей, аналогично росту количества клеток в любом живом растущем организме. Одновременно с этим происходит и дальнейшее снижение максимально допустимой скорости движения для этой увеличенной материальной частицы. Последующий рост массы приводит к появлению крупных материальных тел с ещё большим количеством материальных клеток и со значительно сниженной максимально допустимой скоростью движения.

1.4.3.2. Квант инерции

Как известно, инерция – это сопротивление массы объекта действию внешней силы, стремящейся изменить вектор скорости его движения. Следовательно, инерция связана с массой, то есть присуща лишь материи. Что касается эфира, то у него из-за отсутствия массы нет и инерции.

Зарождение квантов материи сопровождается появлением кванта массы и кванта кинетической энергии. Сила, с которой один квант массы, обладающий одним квантом кинетической энергии, сопротивляется внешней силе, стремящейся изменить вектор скорости её движения, является квантом инерции. Таким образом, если объект обладает 5 квантами кинетической энергии, то и инерция этого объекта составит тоже 5 квантов инерции.

Взаимодействие объектов может иметь пять видов последствий:

– неизменность направления движения объектов, когда сила их взаимного сближения не превышает одного кванта инерции;

– изменение направления движения объектов, когда сила их взаимного сближения превышает один квант инерции, но значительно меньше силы инерции;

– создание стабильного объекта со сложной структурой (атомы, планетарные системы типа солнечной, двойные звёзды и др.), когда сила взаимного сближения объектов и сила их инерции соизмеримы;

– создание особого стабильного объекта (магнитного диполя), когда сила взаимного сближения объектов и сила их инерции равны;

– слияние двух объектов в один, когда сила взаимного сближения объектов значительно превышает силу их инерции.

1.4.3.3. Пра-эфир

Таким образом, в соответствии с полученными представлениями, эфир первоначально был однородным полем, состоящим из мельчайших квантов эфира, обладающих высокой энергией – E0 и равномерно распределенных в поле эфира с высокой плотностью – р. Иными словами, это поле можно назвать и пра-эфиром, то есть предшественником не только всей материи, но и современного эфира.

К этому пра-эфиру совершенно неприменимы такие привычные нам понятия как частица, тело, система и связанные с ними понятия: масса, движение, время, скорость, ускорение, и так далее. Поэтому пра-эфир для современной науки воспринимается как абсолютное ничто. Если современная наука обнаружит область пра-эфира, то она будет восприниматься как "дыра" в космосе. Это и произошло в 2007 году, когда астрономы из Миннесотского университета (США) обнаружили пустое пространство протяженностью 1 млрд световых лет, названное журналистами "белой дырой" из-за отсутствия в нём каких-либо объектов.

Если кроме пра-эфира ничего не существовало бы, то ничего не смогло бы измениться. Но поскольку всё стало другим, то можно сделать вывод, что по отношению к пра-эфиру существовало и, поныне существует нечто другое.Это нечто, воздействуя на пра-эфир, изменило его и превратило в современное состояние, которое мы называем космосом.

Следовательно, космос есть результат воздействия на пра-эфир внешней силы, которая привела к нарушению однородности пра-эфира. Под действием этой внешней силы (праны) высокоэнергичные кванты эфира стали уплотняться, преобразовываясь в кванты материи, с массой равной одному кванту. Иными словами начался процесс материализации пра-эфира, сопровождающийся разряжением пра-эфира в зоне образования материи.

В соответствии с представлением современной науки, вся материя составляет приблизительно 30% от состава всей вселенной, а остальные 70% составляет так называемая тёмная энергия, то есть пра-эфир. Из всей материи наблюдаемая и изучаемая наукой материя составляет лишь 15% (то есть около 5% от состава всей вселенной), а около 85% от всей материи является так называемая тёмная материя, которая не испускает электромагнитного излучения и не взаимодействует с ним, что делает невозможным её прямое наблюдение [7]. На наш взгляд, тёмная материя это пока неизученные современной наукой мелкие частицы вплоть до кванта материи.

1.4.3.4. Разряженные эфирные шары

В отличие от квантов эфира частицы материи находятся в постоянном движении, то есть обладают кинетической энергией, благодаря которой появилась возможность объединения мелких частиц в более крупные с большей массой, но меньшей скоростью движения. При объединении материальных частиц в более крупные и сложные объекты (атомы и молекулы) расстояния между составными частями этих объектов увеличивались, а плотность эфира снижалась по сравнению с первоначальным значением – р.

С появлением вырожденных квантов пространства первоначальное равновесие соседних с ними квантов эфира стало нарушаться, что привело к "переходу" квантов эфира из одних квантов пространства в другие. Так разряженные участки пра-эфира частично заполнились квантами эфира из соседних более плотных областей, и таким образом первоначальный однородный пра-эфир превратился в современный эфир, в котором каждый объект находится в центре разряженного эфирного шара. Радиус шара увеличивается с увеличением массы объекта, а степень разряженности эфира в шаре снижается с удалением от центра шара.

На наш взгляд, с большой степенью вероятности можно предположить, что в разряженном эфирном шаре плотность эфира на расстоянии t от центра объекта – рt, масса объекта – m и расстояние от центра объекта – t связаны следующей зависимостью:

Графически эта зависимость представлена на рисунке 11.

Рисунок 11. Зависимость плотности эфира – pt от расстояния до центра объекта – t для разных значений его массы – m

Из рисунка видно, что чем больше масса объекта, тем медленнее растёт плотность эфира при удалении от центра шара. В предельных случаях: при массе объекта – m, стремящейся к нулю, плотность эфира – рt стремится к р, а при m, стремящейся к бесконечности, плотность – рt стремится к нулю.

1.4.3.5. Ускорение движения материальной частицы в разряженном эфирном шаре

Скорость движения в заряженном эфирном пространстве материальной частицы, умещающейся в одном кванте пространства, является величиной постоянной для любого направления движения и не зависит от массы частицы. При приближении материальной частицы к другому объекту она попадает в окружающее этот объект пространство разряженного эфирного шара, степень разряжения которого увеличивается по мере приближения к его центру.

Поскольку движение есть последовательная смена состояния соседних по траектории движения материальной частицы квантов пространства, а в поле разряженного эфира находятся и вырожденные кванты пространства, то движение материальной частицы превращается в смену состояния не соседних квантов пространства, а удалённых друг от друга на один или несколько квантов пространства по траектории движения частицы. Образно выражаясь, можно сказать, что "шаги" материальной частицы от кванта пространства к соседнему кванту пространства превращаются в "прыжки" на два или несколько "шагов" по траектории движения.

Таким образом, скорость движения материальной частицы в поле разряженного эфирного шара начинает увеличиваться, и по мере приближения частицы к центру разряженного эфирного шара, то есть к другому объекту, она всё более и более возрастает. Если частица не сольётся с этим объектом, то наибольшей скорости она достигнет в точке траектории, наиболее приближенной к центру этого объекта. Чем больше масса объекта, а следовательно и размеры разряженного эфирного шара, тем большую степень разряжения испытывает частица, и тем больше она ускоряется при приближении к объекту.

1.4.3.6. Движение материальной частицы в движущемся разряженном эфирном шаре

При движении разряженного эфирного шара навстречу к материальной частице относительная скорость их движения станет равной сумме скоростей их движения. Однако при этом надо учитывать, что при встречном движении квантов эфира разряженного эфирного шара длина "прыжков" материальной частицы сокращается, что приводит к снижению и скорости её движения. Таким образом, достигнув объекта, частица не приобретает той скорости, которую она приобрела бы при неподвижном разряженном эфирном шаре.

Следовательно, хотя при встречном движении материальной частицы и разряженного эфирного шара и происходит сложение скоростей их движения, относительная скорость движения частицы практически не увеличивается из-за снижения скорости её движения во встречно движущемся разряженном эфирном шаре.

При попутном движении материальной частицы и разряженного эфирного шара относительная скорость частицы уменьшается на величину скорости попутного движения разряженного эфирного шара, но сама скорость частицы в разряженном эфирном шаре увеличивается из-за увеличения длины её "прыжков", что компенсирует снижение относительной скорости частицы.

Таким образом, независимо от направления движения разряженного эфирного шара скорость, с которой достигает материальная частица другого объекта, практически остаётся неизменной. Иными словами, прибор, фиксирующий эту скорость, то есть наблюдатель, не обнаруживает изменение скорости, что и было подтверждено опытом Майкельсона-Морли. Поэтому можно предположить, что основанное на опыте Майкельсона-Морли утверждение об отсутствии эфира является ошибочным.

1.4.3.7. Движение материальной частицы, испускаемой движущимся объектом

Если объект распространяет в окружающее пространство материальные частицы и при этом сам находится в движении, то длина "прыжков", а следовательно и скорость движения материальной частицы, движущейся навстречу движению разряженного эфирного шара, уменьшается, а длина "прыжков", и, следовательно, скорость движения материальной частицы, движущейся попутно движению разряженного эфирного шара, увеличивается по сравнению с длиной "прыжков" и скоростью движения частицы в неподвижном разряженном эфирном шаре.

Однако, при достижении границы разряженного эфирного шара, их скорости практически становятся равными и дальнейшее их движение в поле заряженного эфира происходит с одинаковой скоростью во всех направлениях, независимо от направления и скорости движения объекта, испускающего рассматриваемые материальные частицы.

Таким образом, сложение или вычитание скоростей движения частиц и испускающего их объекта, то есть их источника, происходит исключительно в пределах разряженного эфирного шара. За пределами разряженного эфирного шара, созданного источником материальных частиц, скорость движения частиц не зависит от скорости и направления движения их источника, что явилось причиной ошибочного заключения об абсолютной независимости скорости света от направления и скорости движения его источника, в том числе и в непосредственной близости от источника.

1.4.3.8. Природа гравитации

В случае большого удаления объекта от других объектов он практически находится в равновесии с окружающим его эфиром, так как разряженность эфира, создаваемая объектом, симметрична по отношению к объекту, находящимся в центре разряженного эфирного шара. Но поскольку объект двигается, то неминуемо возникает ситуация, когда он окажется в разряженной зоне, созданной другим объектом. В таком случае равновесие объекта с эфиром нарушается, так как объект начинает испытывать различные давления с разных сторон от разряженной зоны, созданной другим объектом. Таким образом возникает сила, направляющая данный объект к центру разряженной эфирной зоны, созданной другим объектом, то есть к этому другому объекту.

Это обстоятельство объясняет природу гравитации и известно науке как закон всемирного тяготения, открытый И. Ньютоном в 1687 г. на основе чисто экспериментальных данных. На наш взгляд, правильнее было бы его назвать законом всемирного сближения, так как никакого тяготения или притяжения между объектами не существует. Строго говоря, термины "тяготение" и "притяжение" следовало бы использовать в кавычках, однако мы эти кавычки будем лишь подразумевать. Закон всемирного тяготения, хотя и приближенно, но достаточно приемлемо отражает только один из четырёх известных науке типов взаимодействия между объектами, а именно, самое слабое, именуемое гравитационным взаимодействием.

Чем меньше расстояние между центрами объектов, тем сильнее взаимодействие между ними отличается от закона всемирного тяготения, поэтому этот закон не может претендовать на всеобщность. Это обстоятельство привело к необходимости разработки теорий для других типов взаимодействий, которые имеют место в микромире. Так появилась необходимость привлечения для объяснения взаимодействия в микромире так называемых электрических зарядов, взаимодействующих между собой по закону, открытому Кулоном в 1785 г. и так называемых ядерных сил, которые должны были отвечать за:

– сильное ядерное взаимодействие, удерживающее положительно заряженные протоны в непосредственной близости внутри атомного ядра и впервые количественно описанное Х. Юкавой в 1935 г.;

– короткодействующее (оно проявляется на расстоянии приблизительно в 1000 раз меньшем, чем размер атомного ядра) слабое ядерное взаимодействие, вызывающее, в частности, бета-распад ядра, впервые количественно описанное Э. Ферми в 1933 г.


    Ваша оценка произведения:

Популярные книги за неделю