Текст книги "Большая Советская Энциклопедия (ТИ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 10 (всего у книги 26 страниц)
Тиобактерии
Тиобакте'рии, то же, что серобактерии .
Тиоиндигоиды
Тиоиндиго'иды, тиоиндигоидные красители, кубовые красители группы индигоидных красителей , содержащие в своём составе серу. Основной представитель Т. – тиоиндиго (2,2-бис -тионафтениндиго), серусодержащий аналог индиго :
Т. окрашивают хлопок, шерсть, лён, вискозу, шёлк и мех в оранжевый, красный, фиолетовый, коричневый, чёрный цвета. Разнообразие оттенков достигается использованием различных производных Т., в том числе несимметрично построенных, например 2-тионафтен-2-индолиндиго. Т. дают прочные окраски. Получение Т. из ароматических аминов и некоторых др. ароматических соединений – сложный многостадийный процесс.
Лит.: Степанов Б. И., Введение в химию и технологию органических красителей. [Учебник], М., 1971.
Тиокислоты
Тиокисло'ты (от тио ... ), сернистые аналоги кислородных кислот, в молекулах которых кислород замещен на серу.
Неорганические Т. нестойки и в свободном состоянии их выделить обычно не удаётся; однако соли таких Т. (тиосоли), например Na2 S2 O3 , эфиры, например As (SC6 H5 )3 , и ангидриды, например Sb2 S3 , – достаточно прочные вещества.
Органические Т. (тиокарбоновые кислоты) подразделяются на монотиокарбоновые – тиоловые (а ) и тионовые (б ), дитиокарбоновые (в ) кислоты:
Монотиокарбоновые кислоты существуют в виде таутомерной смеси с сильным преобладанием тиоловой формы; производные известны для обеих форм. Т. (особенно простейшие) обладают сильным неприятным запахом. По сравнению с соответствующими карбоновыми кислотами, Т. – более сильные кислоты, в воде растворяются хуже, кипят при более низких температурах. Органические Т. получают главным образом взаимодействием карбоновых кислот с пятисернистым фосфором (1) или производных карбоновых кислот с сероводородом (2):
Амиды тионовых кислот (тиоамиды) RC (S) NR¢2 применяются в синтезах гетероциклических соединений; амид a-этилизотионикотиновой кислоты (этионамид) – противотуберкулёзное средство. Эфиры дитиоугольной кислоты (ксантогенаты) используются в производстве вискозного волокна (см. Вискоза ), а также в качестве гербицидов.
Б. Л. Дяткин.
Тиоколы
Тиоко'лы, то же, что полисульфидные каучуки .
Тиомочевина
Тиомочеви'на, диамид тиоугольной кислоты, тиокарбамид, H2 NC (S) NH2 , белые кристаллы горького вкуса, tпл 180—182 °С (при быстром нагревании; при медленном – разлагается); умеренно растворима в воде, метаноле, пиридине, хорошо – в 50%-ном водном пиридине. Т. получают изомеризацией тиоцианата аммония (а) и присоединением сероводорода к цианамиду (б):
При гидролизе Т. образуются аммиак, сероводород и углекислый газ. Алкилирование Т. приводит к S-алкилпроизводным изотиомочевины (S-алкилизотиурониевым солям) (I); последние при действии щелочей распадаются с образованием меркаптанов (II):
(X – галоген; R – алкил).
Т. применяют в синтезе различных органических соединений, в том числе лекарственных препаратов, а также в качестве ростового вещества . Свойство Т. давать соединения включения только с разветвленными и циклическими насыщенными углеводородами , но не с углеводородами нормального строения, используется для их разделения.
Б. Л. Дяткин.
Тионвиль
Тионви'ль, Тьонвиль (Thionville), город на С.-В. Франции, в департаменте Мозель. 37 тыс. жителей (1968). Пристань на р. Мозель, ж.-д. узел. Центр одного из главных железорудных и металлургических районов (Мец – Тионвиль) Лотарингии. Металлургия, машиностроение и металлообработка, химическая промышленность.
Тионил
Тиони'л (от греч. théion – сера и hýle – вещество), тионильная группа =SO с двумя свободными связями, которые могут быть насыщены галогенами, в частности хлором (см. Тионил хлористый ).
Тионил хлористый
Тиони'л хло'ристый, тионилхлорид, SOCl2 , бесцветная дымящаяся на воздухе жидкость. В промышленности Т. х. получают прямым взаимодействием S, O2 , Cl2 при 180—200 °С (с использованием в качестве катализатора активного угля) или действием избытка SO2 на CCl4 в присутствии AlCl3 при 150 °С и давлении около 4Мнм2 (40 кгс /см2 ) Применяется для получения сульфохлорированных производных полимеров, как хлорирующий агент (например, в производстве красителей и фармацевтических препаратов).
Т. токсичен – раздражает слизистые оболочки, вызывая тяжёлые ожоги.
Тионовые бактерии
Тио'новые бакте'рии, бактерии рода Thiobacillus, способные получать энергию за счёт окисления восстановленных соединений серы. Подробнее см. Серобактерии .
Тиопентал-натрий
Тиопента'л-на'трий, лекарственный препарат из группы наркотических средств . Применяют главным образом для внутривенного наркоза . Готовят непосредственно перед употреблением. Антагонист Т.-н. – бемегрид.
Тиосерная кислота
Тиосе'рнаякислота' , серноватистая кислота, Na2 S2 O3 , непрочная двухосновная кислота (в свободном состоянии не получена); производное серной кислоты, в которой атом кислорода замещен атомом серы. Применение находят её соли – тиосульфаты .
Тиосоли
Тиосо'ли, сульфосоли, соли тиокислот , соединения, подобные солям кислородных кислот, но отличающиеся тем, что в них атомы кислорода замещены атомами серы. В отличие от неустойчивых тиокислот, Т. устойчивы и находят практическое применение (см., например, тиосульфат натрия ).
Тиоспирты
Тиоспирты', то же, что меркаптаны . См. также Сераорганические соединения .
Тиосульфат натрия
Тиосульфа'т на'трия, серноватистокислый натрий, гипосульфит натрия Na2 S2 O3 . Т. н. – бесцветные кристаллы, хорошо растворимые в воде (41,2% по массе при 20 °С, 69,9% при 80 °С). Т. н. образует несколько кристаллогидратов; в промышленности и в лабораториях используется только пентагидрат Na2 S2 O3 · 5H2 O. Получают Т. н. кипячением раствора сульфита натрия с порошком серы: Na2 SO3 + S = Na2 S2 O3 . Применяют для фиксирования фотографического , определения йода в иодометрии , в текстильной промышленности и др. областях. В медицине применяется как десенсибилизирующее, противовоспалительное и антитоксическое лекарственное средство. Антитоксическое действие основано на способности Т. н. образовывать неядовитые соединения: сульфиты – с мышьяком, таллием, ртутью, свинцом; роданиды – с синильной кислотой. Т. н. вводится преимущественно внутривенно (в виде 10—30%-ного раствора) при аллергических заболеваниях, артритах, дерматозах и отравлениях.
Тиосульфаты
Тиосульфа'ты, соли тиосерной кислоты H2 S2 O3 . Т. щелочных и щёлочноземельных металлов (кроме Ва), а также аммония, цинка, кадмия хорошо растворимы в воде. Наибольшее практическое значение имеет тиосульфат натрия .
Тиофен
Тиофе'н, гетероциклическое соединение, бесцветная жидкость с запахом, напоминающим запах бензола; tnл —38,3 °С, tкип 84,1 °С; плохо растворим в воде, хорошо – в органических растворителях.
Т. содержится в бензольной фракции каменноугольной смолы (откуда его и выделяют), а также в продуктах полукоксования поволжских сланцев. Синтетически Т. можно получить, например, пиролизом смеси натриевой соли янтарной кислоты с трёхсернистым фосфором, из бутана и серы, из фурана (метод Ю. К. Юрьева). Т. – типичное ароматическое соединение: легко галогенируется, сульфируется, алкилируется. Некоторые производные Т. используются как биологически активные вещества (например, модифицированные пенициллины , антигельминтные препараты), комплексоны (например, тенаилтрифторацетон).
Тиофенолы
Тиофено'лы, органические соединения, содержащие меркаптогруппу (—SH) у атома углерода ароматического кольца; бесцветные с неприятным запахом высококипящие жидкости; не растворяются в воде, растворяются в большинстве органических растворителей. Простейший Т. – меркаптобензол (тиофенол, фенилмеркаптан) C6 H5 SH (tкип 169 °С). Получают Т. восстановлением диарилдисульфидов ArS—SAr (см. Сульфиды органические ) и др. методами. Т. применяют в синтезе красителей, полимеров, ингибиторов радикальных реакций, стабилизаторов и др. добавок к синтетическим каучукам (см. также Меркаптаны ).
Тиохром
Тиохро'м, C12 H14 ON4 S, продукт окисления в щелочной среде тиамина . Кристаллы Т. имеют жёлтую окраску. Водные растворы в УФ-свете (l максимальное 460– 470 нм ) обладают интенсивной флуоресценцией. На определении специфической флуоресценции Т. основан высокочувствительный метод количественного определения тиамина и тиаминпирофосфата (кокарбоксилазы), используемый в медицинских и биохимических исследованиях.
Тиоэфиры
Тиоэфи'ры,сераорганические соединения общей формулы R—S—R, где R – углеводородный радикал (см. Сульфиды органические ).
Тип (в биологии)
Тип в биологии (typus), 1) высшая таксономическая категория в систематике животных, объединяющая родственные классы. Термин «Т.» был предложена 1825 А. Бленвилем , назвавшим так четыре «ветви» животных, выделенные в 1812 Ж. Кювье . Объём разных Т. неодинаков: в Т. губок около 5000 видов, в Т. погонофор – всего около 100. Т. нередко подразделяют на подтипы; так, например, Т. хордовых включает четыре подтипа: головохордовые, личиночнохордовые (или оболочники)., бесчерепные и черепные (или позвоночные). Все организмы одного Т. характеризуются единым планом строения. Хотя число и объём Т. различны у разных систематиков (от 10 до 33), однако эти расхождения не меняют принципиального значения Т. как категории, отражающей основные (главные) ветви филогенетического древа животных (см. также Систематика ). 2) В систематике растений, разрабатываемой независимо от систематики животных, таксономическая категория (ранг таксона), соответствующая Т., называется отделом.
М. Э. Кирпичников.
Тип номенклатурный
Тип номенклату'рный, элемент, с которым постоянно связывают определённое название таксона. Т. н. названия вида (а также внутривидового таксона) служит чаще всего единственный экземпляр растения или животного, реже – несколько экземпляров, хранящихся вместе (на одном гербарном листе или в одном препарате); иногда Т. н. является рисунок. Так, например, Т. н. колокольчика алданского (Campanula aldanensis) является экземпляр, собранный русским ботаником В. С. Коржевиным 6 августа 1928 на берегу р. Алдан в Сибири и хранящийся в Гербарии Ботанического института им. В. Л. Комарова АН СССР (Ленинград). Т. н. названия рода, а также любого таксона рангом между родом и видом (подрода, секции и т. д.) служит определённый вид. Так, например, Т. н. рода колокольчик (Campanula) служит колокольчик широколистный (Campanula latifolia). Т. н. семейства, а также любого ранга между семейством и родом (трибы, подсемейства и т. д.) служит определённый род; например, Т. н. семейства колокольчиковых служит установленный К. Линнеем род колокольчик (Campanula). К названиям таксонов рангом выше семейства принцип типификации не применяется.
М. Э. Кирпичников.
Тип (форма)
Тип (от греч. týpos – отпечаток, форма, образец), 1) форма, вид чего-либо, обладающие существенными качественными признаками. 2) Образец, модель для чего-либо. 3) Единица расчленения изучаемой реальности в типологии . 4) Таксономическая категория или единица классификации в ландшафтоведении (Т. ландшафта, Т. местности) и в других науках, изучающих отдельные компоненты природной среды, – Т. рельефа, Т. климата, Т. почв, Т. растительности и др. 5) Человек, наделённый какими-либо характерными свойствами, яркий представитель какой-либо группы людей, в частности сословия, класса, нации, эпохи. 6) В литературе и искусстве – типичный характер, образ человека, наиболее «вероятного», «нормального», «идеального» («образцового») для определённого «нрава» (античная комедия), страсти (классицизм), социального сословия (Просвещение) или общества во всей совокупности его социальных, исторических, национальных особенностей (критический реализм, социалистический реализм). См. Характер в литературе, Художественный образ .
Типи
Ти'пи (на языке сиу ), жилище охотничьих племён индейцев прерий Северной Америки – коническая палатка, сооруженная из жердей, обтянутых покрышкой
из сшитых шкур бизона или оленя. В верхней части покрышки устанавливались две лопасти из шкур, защищавшие дымовое отверстие от ветра; внизу оставлялось отверстие для входа, прикрытое шкурой. Т. вмещала от 6 до 15 человек и была хорошо приспособлена к кочевому быту.
Типи индейцев Северной Америки.
Типизация
Типиза'ция, 1) в литературе и искусстве – воплощение типического (см. в ст. Типическое ). 2) В технике – обоснованное сведение многообразия избранных типов конструкций машин, оборудования, приборов, зданий, сооружений, технологических процессов и т. п. к небольшому числу.
В машиностроении Т. конструкций машин позволяет из всей массы выпускаемых или эксплуатируемых машин определённого назначения отобрать образцы с наилучшими эксплуатационными показателями. Сокращение числа типов машин одного назначения служит основой для специализации предприятий и организации поточно-массового и серийного производства.
В строительстве Т. характеризуется проектированием и возведением зданий и сооружений определённых типов, например жилые и промышленные здания из секций, здания и сооружения в целом – типовые школы, жилые дома, больницы, производственные цеха и т. п. Проекты таких зданий и сооружений называются типовыми. В них предусмотрено применение типовых конструкций и стандартных деталей. Для облегчения и удешевления массового производства целесообразно иметь возможно меньшее число типоразмеров стандартных деталей, например балок для перекрытий, стеновых панелей, оконных переплётов. Число типовых деталей, конструкций и зданий в целом устанавливают на основе конструктивных, технологических, экономических и т. п. соображений. Т. осуществляется на основе так называемой модульной системы и унификации элементов зданий и сооружений. Т. является важнейшим условием для внедрения в строительстве индустриальных методов возведения зданий и сооружений, снижения стоимости, сокращения сроков и повышения качества строительства.
Т. технологических процессов заключается в выборе для внедрения из всей массы действующих технологических процессов только наиболее производительных и рентабельных. В машиностроении, например, где вследствие многодетальности и конструктивных сложностей продукции число технологических операций особенно велико, Т. позволяет сократить это многообразие и обрабатывать несколько родственных деталей по типовым технологическим проектам. При этом применяется не специальная, а типовая технологическая оснастка, что позволяет снизить трудоёмкость и сократить продолжительность технологической подготовки производства . Т. осуществляется путём согласования документации между заинтересованными в данном объекте организациями. В химическом, нефтехимическом, пищевом и т. п. производствах типовые технологические процессы широко распространены при получении однотипной продукции, что создаёт возможность повысить стабильность и качество выпускаемой продукции. Т. способствует повышению производительности труда, экономии материальных ресурсов, снижению себестоимости продукции, а также в ряде случаев позволяет сократить сроки освоения новой техники.
Типитака
Типи'така, собрание буддийских текстов на языке пали. См. Трипитака .
Типическое
Типи'ческое, типичное (от греч. týpos – образец), нормальное, образцовое, наиболее вероятное для данной конкретной системы объективного мира (см. Тип ). В эстетике понятие Т. получило преобладающее развитие в литературных теориях 19 в. (В. Г. Белинский, И. Тэн, Г. Брандес и др.) в связи с осмыслением специфических черт реалистического искусства этой эпохи, охарактеризованных Ф. Энгельсом в письме М. Гаркнесс (1888) как «... правдивое воспроизведение типичных характеров в типичных обстоятельствах» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 37, с. 35). Создание типичных индивидуальностей – сложный творческий процесс, который часто обозначают термином «типизация». Типизацию нередко понимают как синтезирование в одном человеческом образе целого ряда типичных черт, которые художник нашёл у разных реальных людей. Но более существен другой процесс: развёртывание, доведение до конца тех возможностей, которые художник усмотрел в известных ему реальных людях. В типичных характерах, в их взаимодействии, в их связи с обстоятельствами воплощается художественное познание конкретного соотношения личности и общества.
...типия
...типия (от греч. týpos – отпечаток), часть сложных слов, указывающая на отношение к процессам печатания, полиграфии (например, автотипия , фототипия ).
Типов теория (в логике)
Ти'пов тео'рия в логике, система расширенного исчисления предикатов или аксиоматической теории множеств , включающая переменные различных «типов» (сортов, ступеней, порядков). Формальные объекты этой теории, согласно системе Рассела – Уайтхеда, разделяются на типы: предметы (индивиды), предикаты, предикаты от предикатов и т. д. [объекты n -го типа – это предикаты от объектов (n– 1)-го и, быть может, меньших типов]. При «двойственной» формулировке Т. т. как аксиоматической теории множеств объекты n- го типа суть множества объектов (n— 1)-го (и, быть может, меньших) типа. Соответственно, принцип свёртывания (абстракции принцип ), неограниченное пользование которым в расширенном исчислении предикатов и в теории множеств приводит к парадоксам , звучит теперь несколько по-другому: «для всякой предикатной формулы со свободной переменной х, не содержащей объектов выше (n— 1)-го типа, существует предикат n- го типа, истинный для тех и только тех значений х, для которых истинна данная формула», или «для любого свойства, в формулировке которого используются множества не выше (n— 1)-го типа, существует множество n -го типа, состоящее из тех и только тех предметов, которые обладают этим свойством». В обеих формулировках выделены слова, добавление которых отличает теоретико-типовую форму аксиомы свёртывания от обычной и которые препятствуют возникновению в Т. т. парадоксов, возникающих в «наивной» теории множеств, в том числе парадокса Рассела о «множестве всех множеств, не содержащих себя в качестве элемента».
Однако математика, построенная на базе Т. т., оказывается, как показывает внимательный анализ, существенно более бедной, чем обычная классическая математика. Поэтому Рассел ввёл в свою систему так называемую аксиому сводимости, постулирующую, грубо говоря, для каждого множества (предиката) n- го типа существование эквивалентного ему множества 1-го типа. Но уже для этой аксиомы ни на какое «чисто логическое» обоснование математики, как показал сам Рассел, рассчитывать не приходилось (в силу чего программа логицизма выведения всей математики из «чистой» логики оказывалась невыполнимой).
Лит .: Гильберт Д., Аккерман В., Основы теоретической логики, пер. с нем., М., 1947, гл. 4 и прилож. 1; Ван Хао, Мак -Нотон P., Аксиоматические системы теории множеств, пер. с франц., М., 1963, гл. 1—2, 5—6; Френкель А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966, гл. 1, 3 (лит.); Andrews Р. В., A transfinite type theory with type variables, Amst., 1965.
Типов теория (в химии)
Ти'пов тео'рия в химии, одна из ведущих химических теорий середины 19 в. В 1839– 1840 Ж. Б. Дюма предложил рассматривать химические соединения как продукты замещения одних элементов или радикалов (см. Радикалов теория ) другими в немногих «типичных» соединениях («старая Т. т. »). В 1853 Ш. Жерар разработал «новую Т. т.» и использовал её для классификации органических соединений. Согласно Жерару, более сложные органические соединения могут быть произведены от следующих основных четырёх типов веществ:
Заменяя в этих формулах атомы Н др.: атомами или радикалами (по Жерару, «остатками»), можно было получить формулы органических соединений всех известных в середине 19 в. классов. Например, к типу водорода относили углеводороды, металлоорганические соединения, альдегиды, кетоны, к типу воды – спирты, кислоты, эфиры, к типу хлористого водорода – моногалоген опроизводные углеводородов, к типу аммиака – амины, амиды, имиды, арсины, фосфины. С 1857 по предложению Ф. А. Кекуле углеводороды стали относить к типу метана.
Т. т. способствовала развитию органической химии, в частности классификации органических соединений. Но её основная мысль – уложить соединения углерода в формулы простейших неорганических соединений – была ошибочной. Вскоре обнаружилась необходимость введения кратных (удвоенных, утроенных и т. д.) и смешанных (составленных из двух и более простых) типов, а также возможность относить соединения одного класса к разным типам (например, альдегиды – к типам водорода и воды). Кроме того, формулы Т. т. выражали не истинное строение соединений, а только сходство некоторых их реакций с реакциями более простых и известных веществ. Поэтому в 1860-х гг. Т. т. стала уступать место классической химического строения теории , созданной А. М. Бутлеровым .
Лит.: Быков Г. В., История классической теории химического строения, М., 1960, с. 17—23.
С. Л. Погодин.