Текст книги "Большая Советская Энциклопедия (ПЬ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 1 (всего у книги 3 страниц)
Большая Советская Энциклопедия (ПЬ)
Пьедестал
Пьедеста'л (франц. piédestal, от итал. piedistallo, от piede – нога и stallo – место), постамент, основание, на котором устанавливается произведение скульптуры (статуя, группа, бюст) либо ваза, колонна, обелиск и т.д. П. могут иметь различные формы – геометрически правильные (обычно с применением архитектурных ордерных элементов, нередко с украшением скульптурным рельефом) или произвольные (например, П. в виде естественного, необработанного камня).
Пьедрас-Неграс
Пье'драс-Не'грас (Piedras Negras), город на С.-В. Мексики, на р. Рио-Браво-дель-Норте, в штате Коауила, на границе с США. 65,9 тыс. жителей (1970). Железной дорогой и шоссе соединён с Мехико. Чёрная металлургия. Через П.-Н. идёт пограничная торговля с США.
Пьеза
Пье'за (от греч. piézo – давлю), единица давления и механического напряжения МТС системы единиц. Обозначения: русское пз, международное pz. П. равна давлению, создаваемому силой 1 стен, равномерно распределённой по нормальной к ней поверхности площадью 1 м2. 1 пз = 1000 н/м2 (паскалей) = 0,0102 кгс/см2. Система единиц МТС вышла из употребления, и П. не включена в действующие советские стандарты на единицы.
Пьезогеофон
Пьезогеофо'н (от греч. piézo – давлю и геофон), прибор для приёма распространяющихся в горных породах звуковых волн, приёмником которых служит пьезоэлектрический датчик. Предназначен для определения места подачи сигналов горнорабочими в случае внезапного обрушения горных пород в шахте. П. воспринимает звуковые волны, возникающие в горных породах от ударов металлическим предметом, на расстоянии до 70 м. Место подачи сигналов определяется П. с двух мест прослушивания. П. находятся на оснащении горноспасательных частей.
Пьезоглипты
Пьезогли'пты (от греч. piézo – давлю и glyptós – вырезанный, изваянный), характерные углубления на поверхностях метеоритов, напоминающие отпечатки пальцев на мягкой глине. Более употребительно название регмаглипты. См. Метеориты.
Пьезокварц
Пьезоква'рц (от греч. piézo – давлю и кварц), кристаллы кварца с однородными монокристальными участками, пригодные для применения в радиоэлектронных устройствах благодаря эффекту пьезоэлектричества. В технике широко используются искусственно выращенные кристаллы П. См. также Пьезоэлектрические материалы.
Пьезомагнетизм
Пьезомагнети'зм (от греч. piézo – давлю и магнетизм), пьезомагнитный эффект, возникновение в веществе намагниченности под действием внешнего давления. П. может существовать только в веществах, обладающих антиферромагнитной магнитной структурой, и принципиально невозможен в пара– и диамагнетиках. П. возникает тогда, когда под действием приложенного давления магнитная симметрия антиферромагнитного кристалла изменяется т. о., что в нём появляется слабый ферромагнетизм. Намагниченность в образце возникает в результате скоса антиферромагнитных подрешёток или относительного изменения величины их намагниченности (см. Антиферромагнетизм). П. был экспериментально обнаружен пока лишь в трёх антиферромагнитных кристаллах: MnF2, CoF2 и a-Fe2O3. Величина намагниченности в них Ji пропорциональна приложенному упругому напряжению skl, т. е. Ji = Liklskl. Пьезомагнитный эффект невелик – максимальное значение коэффициента Lik (в CoF2) составляет 2×10—3гс×см2/кгс (~ 2×10—12тл×м2/н). Существует термодинамически обратный эффект – линейная магнитострикцияантиферромагнетиков, т. е. пропорциональное магнитному полю (линейное) изменение размеров кристаллов при наложении внешнего поля.
Лит.: Вонсовский С. В., Магнетизм, М., 1971, с. 758.
А. С. Боровиков-Романов.
Пьезометр
Пьезо'метр (от греч. piézo – давлю, сжимаю и ... метр), устройство, служащее для измерения изменения объёма веществ под воздействием гидростатического давления (см. Давление высокое). Пьезометрические измерения используются для получения данных о сжимаемости (объёмной упругости) веществ, для исследования диаграмм состояния, фазовых переходови др. физико-химических процессов.
Конструкция П. определяется диапазоном применяемых давлений и температур, агрегатным состоянием исследуемого вещества (газообразное, жидкое, твёрдое). его сжимаемостью. Различают в основном 2 типа П. В П. первого типа масса М исследуемого вещества постоянна, а его объём V изменяется с изменением давления р и температуры Т. П. такого типа представляет собой толстостенный сосуд, в котором сжимают исследуемое вещество; его применяют для определения сжимаемости газов, жидкостей и твёрдых тел. В процессе эксперимента измеряют изменение V с р, при этом температура вещества обычно поддерживается постоянной. В П. второго типа М — переменная величина, а объём сосуда с исследуемым веществом не изменяется (с точностью до деформации П. под действием давления, которая учитывается как поправка). Для исследования жидкостей, обладающих значительной вязкостью, и твёрдых тел П. второго типа не применяются. При работе с этими П. измеряют р, а величину М определяют после каждого изменения М (например, взвешиванием) или после разгрузки (например, измерением объёма заполнявшего П. газа при стандартных условиях).
Для определения сжимаемости жидкостей и твёрдых тел при высоких давлениях (р ~ 108—1010н/м2) применяются П. плунжерного или поршневого типа. Схема подобной установки показана на рис. 16, а. В процессе сжатия определяются V (по смещению поршней, оптически или при помощи находящихся в сосуде электрических датчиков) и р (по величине усилия, приложенного к поршню, или при помощи электрических датчиков). В ряде случаев передающей давление средой служит само исследуемое вещество. При р ³ 109—1010н/м2 (10—100 кбар) сжимаемость определяют др. методами, например методами рентгеновского структурного анализа. Изменение линейных размеров тел под гидростатическим давлением измеряют линейными П. (см. Дилатометр).
Термин «П.» (англ. и нем. Piezometer, франц. piézomètre) введён в 20-х гг. 19 в. в связи с работами английского физика Дж. Перкинса и И. Х. Эрстеда по сжимаемости жидкостей. П. того времени представлял собой сосуд с исследуемой жидкостью, который погружался открытым концом в ртуть, находящуюся, в свою очередь, на дне сосуда высокого давления. При создании давления над ртутью (водой или маслом) последняя вытеснялась в сосуд с исследуемой жидкостью. Высота подъёма ртути, зависящая от давления и сжимаемости исследуемой жидкости, регистрировалась визуально (в стеклянном П.), по изменению электрического сопротивления платиновой проволоки и др. методами. Дальнейшее развитие пьезометрии связано в 19 в. с именами русских учёных Г. Ф. Паррота, Э. Х. Ленца и Д. И. Менделеева, французских физиков Э. Амага и В. Реньо; в 20 в. – главным образом с работами Г. Таммана и американских физиков Т. Ричардса и П. Бриджмена.
В технике физического эксперимента при высоких давлениях П. иногда называют толстостенные сосуды высокого давления с цилиндрическим каналом, не предназначенные для измерения сжимаемости. В английской литературе П. называют также устройства для измерения давления в проточных системах, давления воды в морских глубинах, газов в канале ствола орудия.
Лит.: Бриджмен П. В., Физика высоких давлений, пер. с англ., М. – Л., 1935; его же, Новейшие работы в области высоких давлений, пер. с англ., М., 1948; Циклис Д. С., Техника физико-химических исследований при высоких и сверхвысоких давлениях, 3 изд., М., 1965; Корнфельд М., Методы и результаты исследования объёмной упругости вещества, «Успехи физических наук», 1954, т. 54, в. 2.
Л. Д. Лившиц.
Рис. 16. Схемы аппаратов высокого давления: а – аппарат «цилиндр – поршень»; б – «наковальни» Бриджмена; в – установка с коническими пуансонами; г – «наковальни», погруженные в пластичную среду, сжатую до меньшего давления; д и е – «тетраэдрическая» и «кубическая» установки (пуансон, обращенный к зрителю, не изображен); отдельно показана форма сжимаемого тела; 1 – пуансон (поршень); 2 – сосуд высокого давления; 3 – сжимаемый образец; 4 – среда, передающая давление. Стрелками показаны направления действия сил.
Пьезоэлектрическая керамика
Пьезоэлектри'ческая кера'мика, пьезокерамика, пьезоэлектрические материалы, получаемые методом керамической технологии из сегнетоэлектрических соединений (см. Сегнетоэлектрики). В процессе изготовления П. к. подвергают воздействию внешнего электрического поля, в результате чего в ней происходит ориентирование сегнетоэлектрических доменов и возникает остаточная поляризация. Изделия из П. к. обычно либо прессуют из порошкообразных масс, либо отливают из пластифицированных (шиликерных) масс (см. Керамика). Обжиг П. к. проводят при 1200—1350 °С. Перспективный метод подготовки исходных порошков – совместное химическое осаждение компонентов, позволяющее благодаря однородности состава повысить и стабилизировать пьезоэлектрические свойства керамики. П. к. применяется для изготовления излучателей и приёмников ультразвука, генераторов высокого напряжения и т.д.
О свойствах П. к. см. в статьях Пьезоэлектрические материалы,Пьезоэлектричество.
Лит.: Глозман И. А., Пьезокерамика, М., 1967; Смажевская Е. Г., Фельдман Н. Б., Пьезоэлектрическая керамика, М., 1971.
Пьезоэлектрические материалы
Пьезоэлектри'ческие материалы, кристаллические вещества с хорошо выраженными пьезоэлектрическими свойствами (см. Пьезоэлектричество), применяемые для изготовления электромеханических преобразователей: пьезоэлектрических резонаторов, пьезоэлектрических датчиков, излучателей и приёмников звука и др. Основными характеристиками П. м. являются: 1) коэффициент электромеханической связи , где d — пьезомодуль, Е — модуль упругости, e – диэлектрическая проницаемость (в анизотропных П. м. все эти и нижеследующие величины – тензорные); 2) величина k2Itgd, определяющая кпд преобразователя (d – угол диэлектрических потерь); 3) отношение механической мощности пьезоэлемента на резонансной частоте к квадрату напряжённости электрического поля в нём; определяется величиной (dE)2; 4) и определяют чувствительность приёмника звука соответственно в области резонанса и на низких частотах (сзв – скорость звука в П. м.). В табл. приведены характеристики некоторых наиболее распространённых П. м. К П. м. в зависимости от назначения предъявляются специальные требования: высокая механическая и электрическая прочности, слабая температурная зависимость характеристик, высокая добротность, влагостойкость и т.д.
Основные характеристики наиболее распространенных пьезоэлектрических материалов при температуре 16—20 °С
Плот– ность, r кг/м3 | Ско– рость звука, Сзв, 103м/сек | Диэлект– рическая проницаемость, e | Пьезо– модуль, d, 1012 к/н | Тангенс угла диэлект– рических потерь, tg d×102 | Коэф– фициент электро– механи– ческой связи k | k2/tgd | Примеча– ние | ||
Кварц | 2,6 | 5,47(11) | 4,5(11) | 2,31(11) | < 0,5 | 0,095 | >0,4 | срез x | |
Дегидрофосфат аммония (АДР) | 1,8 | 5,27(33) | 21,8 | 24(36)/2 | < 1 | 0,3 | >8 | срез 45° | |
Сульфат лития | 2,05 | 4,7(33) | 10,3(22) | 18,3(22) | < 1 | 0,37 | >10 | относите– льно оси z | |
Сегнетова соль | 1,77 | 3,9(22) | 250(11) | 172(14)/2 | > 5 | 0,67 | <13 | срез у | |
Сульфонодид сурьмы | 5,2 | 1,5(33) | 1000(33) | 5—10 | 0,8(33) | 9 | срез 45° относите– льно оси x; вещество при T > 55 °С распада– ется | ||
Пьезокерамика | Титанат бария (ТБ—1) | 5,3 | 1500 | 2—3 | данные фирмы Кливайт (США) | ||||
Титанат бария кальция ТБК—3) | 5,4 | 1180 | 1,3; 4,0 | ||||||
Группа цирконата – титаната свинца ЦТС—23 | 7, 4 | 1100 | 0,75—2,0 | ||||||
ЦТБС—3 | 7,2 | 2300 | 1,2—2,0 | ||||||
ЦТСНВ—1 | 7,3 | 2200 | 1,9—9,5 | ||||||
PZT—5H | 7,5 | 3400 | 2,0—3,0 | ||||||
PZT—8 | 7,6 | 1000 | 0,4—0,7 |
Примечание. Цифры в скобках у монокристаллов определяют индексы соответствующих тензорных характеристик, например: (36)/2 означает d36. Для пьезокерамики верхние значения постоянных имеют индексы (11) или (31), а нижние (33), величины d31 < 0, d33 > . Значения tgd для кристаллов даны для поля < 0,05 кв/см; для пьезокерамики tgd даётся в интервале 0,05 кв/см £ E < 2 кв/см. Данные для отечественной пьезокерамики даны на основании ГОСТ 18 927—68.
П. м. могут быть разбиты на: монокристаллы, встречающиеся в виде природных минералов или искусственно выращиваемые (кварц, дигидрофосфаты калия и аммония, сегнетова соль, ниобат лития, силикоселенит и германоселенит и др.), и поликристаллические сегнетоэлектрические твёрдые растворы, подвергнутые после синтеза поляризации в электрическом поле (пьезокерамика). Из П. м. первой группы применяются лишь некоторые кристаллы, например кварц, обладающий большой температурной стабильностью свойств, механической прочностью, малыми диэлектрическими потерями и влагостойкостью. Недостатки – сравнительно слабый пьезоэффект, малые размеры кристаллов, трудность обработки. Используется главным образом в пьезоэлектрических фильтрах и стабилизаторах частоты (см. Кварцевый генератор); в лабораторной технике применяются кварцевые излучатели и приёмники ультразвука. Дигидрофосфат аммония – искусственно выращиваемый сегнетоэлектрический кристалл, химически стоек, до точки плавления (Тпл = 130 °С) обладает сравнительно сильно выраженным пьезоэффектом и малой плотностью, однако недостаточно механически прочен. Кристаллы сегнетовой соли (выращиваемые до больших размеров) имеют высокие значения характеристик, определяющих чувствительность приёмника звука. Малая влагостойкость, низкая механическая прочность, а также сильная зависимость свойств от температуры (из-за низких значений температуры Кюри и Тпл = 55 °С) и напряжённости электрического поля ограничивают применение сегнетовой соли. Ниобат лития, силикоселенит и германоселенит наряду с сильно выраженным пьезоэффектом и высокой механической прочностью обладают высокой акустической добротностью и используются в области гиперзвуковых частот (см. Гиперзвук). Турмалин, гидрофосфат калия, сульфат лития и др. практически не используются. Наиболее распространённым промышленным П. м. является пьезоэлектрическая керамика.
Лит.: Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Ультразвуковые преобразователи, пер. с англ., под ред. Е. Кикучи, М., 1972.
Б. С. Аронов, Р. Е. Пасынков.
Пьезоэлектрический громкоговоритель
Пьезоэлектри'ческий громкоговори'тель, громкоговоритель, в котором в качестве преобразователя электрических колебаний (звуковых частот) в механические используют пьезоэлемент (см. Пьезоэлектричество). Наибольшее распространение получили П. г. с плоским (квадратным в плане) пьезоэлементом из сегнетовой соли. К свободному углу такого элемента приклеивается своей вершиной коническая диафрагма – излучатель звука. П. г., несмотря на низкое качество их звучания и малую надёжность пьезоэлементов, выпускались в СССР в годы Великой Отечественной войны 1941—45 и в первые послевоенные годы как наиболее дешёвые и простые в изготовлении.
Пьезоэлектрический датчик
Пьезоэлектри'ческий да'тчик, измерительный преобразователь механического усилия в электрический сигнал; его действие основано на использовании пьезоэлектрического эффекта (см. Пьезоэлектричество). Один из вариантов конструкции П. д. давления показан на рис. Под действием измеряемого давления на внешней и внутренней сторонах пары пластин пьезоэлектрика возникают электрические заряды, причём суммарная эдс (между выводом и корпусом) изменяется пропорционально давлению. П. д. целесообразно применять при измерении быстроменяющегося давления; если давление меняется медленно, то возрастает погрешность преобразования из-за «стекания» электрического заряда с пластин на корпус. Включением дополнительного конденсатора параллельно П. д. можно уменьшить погрешность измерения, однако при этом уменьшается напряжение на выводах датчика. Основные достоинства П. д. – их высокие динамические характеристики и способность воспринимать колебания давления с частотой от десятков гц до десятков Мгц. Применяются при тензометрических измерениях, в весовых и сортировочных (по весу) устройствах, при измерениях вибраций и деформаций и т.д.
Схема устройства пьезоэлектрического датчика давления: p – измеряемое давление; 1 – пьезопластины; 2 – гайка из диэлектрика; 3 – электрический вывод; 4 – корпус (служащий вторым выводом); 5 – изолятор; 6 – металлический электрод.
Пьезоэлектричество
Пьезоэлектри'чество (от греч. piézo – давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах – пьезоэлектриках. Первое подробное исследование пьезоэлектрических эффектов сделано в 1880 братьями Ж. и П. Кюрина кристалле кварца. В дальнейшем пьезоэлектрические свойства были обнаружены более чем у 1500 веществ, из которых широко используются сегнетова соль, титанат бария и др. (см. Пьезоэлектрические материалы).
Пьезоэлектрические свойства кристаллов связаны с их структурой. Ими обладают все пироэлектрики (спонтанно поляризованные диэлектрики). При механической деформации пироэлектрика меняется величина его спонтанной поляризации, что и наблюдается как прямой пьезоэлектрический эффект. Пьезоэлектрические эффекты наблюдаются также в некоторых непироэлектриках (например, у кварца). Справедливо общее утверждение: кристаллы, обладающие центром симметрии, не могут быть пьезоэлектриками. Это объясняется тем, что при деформации кристалла центр симметрии сохраняется, а при наличии центра симметрии не может быть поляризации (рис. 1, 2). Наличие других элементов симметрии (оси, плоскости симметрии) может «запрещать» появление поляризации в определённых направлениях или при некоторых определённых деформациях (см. Симметрия кристаллов).
Количественными характеристиками П. в данном кристалле является совокупность пьезоконстант и пьезомодулей – коэффициент пропорциональности между электрическими величинами (напряжённость электрического поля Е, поляризация P) и механическими величинами (механические напряжения s, относительные деформации u). Например, P = ds. Коэффициент d и есть одна из пьезоконстант. Т. к. произвольное механическое напряжение может быть представлено как совокупность 6 независимых напряжений, а вектор поляризации P имеет 3 независимых компоненты, то в общем случае может быть 18 разных пьезоконстант d. Однако симметрия кристалла ограничивает число независимых и отличных от нуля пьезоконстант. Величина d зависит от условий опыта, а именно: она имеет одно значение d, если заряд на обкладках конденсатора (рис. 3) поддерживать равным нулю, и другое значение d', если обкладки конденсатора закорочены, т. е. Е = 0. Поэтому соотношение P = ds целесообразно записывать, например, в виде: P = d's + cЕ. Величины d и d' связаны соотношением d’= de, где e – диэлектрическая проницаемость кристалла.
Пьезоконстантами называются также коэффициенты r, g, h в соотношениях P = ru + c’Е, u = S's + hP, u = S's + hE и т.п. Все пьезоконстанты d, r, g, h связаны друг с другом, так что при описании пьезоэлектрических свойств кристалла можно ограничиться только одной, например d. Характерная величина пьезоконстанты d в системе СГСЭ составляет для кварца 3×10—8. Существенно больших величин могут достигать пьезоконстанты сегнетоэлектриков, что связано с их высокой диэлектрической проницаемостью и доменной структурой, которая может перестраиваться при деформации.
Пьезоэлектрики широко применяют в технике, акустике, радиофизике и т.д. Их применение основано на преобразовании электрических сигналов в механические и наоборот. Пьезоэлектрики используются в резонаторах, входящих в состав генераторов (см. Кварцевый генератор), фильтров, различного рода преобразователей и датчиков.
Лит.: Кэдп У., Пьезоэлектричество и его практическое применение, пер. с англ., М. , 1949; Мэзон У., Пьезоэлектрические кристаллы и их применение в ультраакустике, пер. с англ. , М., 1952; Берлинкур [и др.], Пьезоэлектрические и пьезомагнитные материалы и их применение в преобразователях, в кн.: Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966.
А. П. Леванюк. Д. Г. Санников.
Рис. 2. а – плоская модель кристалла, обладающего центром симметрии; б – тот же кристалл, подвергнутый сжатию.
Рис. 1. а – плоская модель кристалла, не имеющего центра симметрии; центры тяжести положительных и отрицательных зарядов совпадают, стрелки изображают отдельные электрические дипольные моменты одной группы зарядов; б – тот же крисстал, подвергнутый сжатию, при котором изменяются длины связей между зарядами каждой группы, но не углы между ними; горизонтальная стрелка слева – суммарный электрический дипольный момент одной группы зарядов.
Рис. 3. а – прямой пьезоэлектрический эффект; сжатие или растяжение пьезоэлектрической пластины приводит к возникновению разности потенциалов; б – обратный пьезоэлектрический эффект; в зависимости от знака разности потенциалов, приложенной к пьезоэлектрической пластинке, она сжимается или растягивается.