355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЮП) » Текст книги (страница 1)
Большая Советская Энциклопедия (ЮП)
  • Текст добавлен: 8 октября 2016, 21:31

Текст книги "Большая Советская Энциклопедия (ЮП)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 1 (всего у книги 1 страниц)

Большая Советская Энциклопедия (ЮП)

Юпитер (мифологич.)

Юпи'тер, в древнеримской мифологии и религии верховное божество. Первоначально бог света, в том числе ночного, исходящего от Луны. Почитался также как бог грома и молнии (отсюда объектами поклонения считались предметы, пораженные молнией, и метеориты, упавшие на землю). С выдвижением Рима на первое место среди общин Италии Ю. приобрёл функцию покровителя Римского государства, дарующего войску стойкость перед лицом неприятеля и победу над врагом. Центром почитания Ю. с 6 в. до н. э. стал храм на Капитолийском холме. Отождествлялся с Зевсом , мифы о котором из греческой мифологии были перенесены на Ю. Планета Ю. получила своё название в римское время.

Юпитер (планета)

Юпи'тер, пятая по расстоянию от Солнца большая планета Солнечной системы, астрономический знак .

  Общие сведения. Ю. – самая крупная из планет-гигантов. Известен с древних времён. Движется вокруг Солнца на среднем расстоянии 5,203 а . е . (778 млн. км ). Эксцентриситет орбиты 0,048, наклон плоскости орбиты к плоскости эклиптики 1,3°. Полный оборот вокруг Солнца Ю. совершает за 11,862 года, двигаясь со средней скоростью 13,06 км/сек . Средний синодический период обращения 399 сут . За 12 лет Ю. обходит всё небо вдоль эклиптики и в противостоянии виден как чуть желтоватая звезда – 2,6 звёздной величины; уступает в блеске только Венере и Марсу во время великого противостояния. Видимый диск Ю. имеет форму эллипса, оси которого в среднем противостоянии видны под углом 45,5'' и 43,7''. В соединении с Солнцем Ю. имеет угловые размеры на 1 /3 меньше, а блеск на 0,84 звёздной величины слабее, чем в противостояниях. Визуальное альбедо Ю. равно 0,67.

  Экваториальный диаметр Ю. равен 142600 км , полярный – 134140 км ; сжатие Ю. (1: 15,9) обусловлено быстрым его осевым вращением. Период вращения близ экватора составляет 9 ч 50 мин30сек (P I), а на средних широтах – 9 ч 55 мин 40 сек (P II). Объём Ю. превосходит объём Земли в 1315 раз, а масса – в 318 раз. Масса Ю. составляет 1: 1047,39 долю Солнца. Средняя плотность (1,33 г/см3 ) мало отличается от средней плотности Солнца. Ускорение силы притяжения на полюсе Ю. равно 27,90 м/сек2 , на экваторе – 25,90 м/сек2 : центробежное ускорение на экваторе – 2,25 м/сек2 . Параболическая скорость (скорость убегания) на поверхности. Ю. равна 61 км/сек . Все геометрические, механические и физические характеристики указаны по данным на 1974. Сведения о Ю. и его спутниках были значительно обогащены результатами измерений и наблюдений, полученными американскими автоматическими межпланетными станциями «Пионер-10» (1973) и «Пионер-11» (1974).

  Атмосфера Ю. Наблюдаемая поверхность Ю. состоит из облаков и других атмосферных образований и пересечена многочисленными тёмными полосами (поясами), разделёнными светлыми зонами, расположенными параллельно экватору, который наклонен всего лишь на 3°04' к плоскости орбиты Ю. Полосы имеют разнообразную окраску и сложную структуру, которая постоянно изменяется. Особенно изменчив вид Южных и Северных экваториальных полос, которые временами исчезают, а затем восстанавливаются с намечающейся цикличностью около 4 лет. Очень узкая экваториальная полоса также нередко становится невидимой. Околополярные же области сравнительно устойчивы.

  Количество тепла, приходящего от Солнца на единицу площади Ю., составляет 51.0 вт/м2 , т. е. в 27 раз меньше, чем на единицу площади Земли. Такое количество тепла способно нагреть поверхность Ю. до температуры (равновесной) 110 К. Между тем прямые измерения как наземными средствами, так и с помощью космических зондов указывают на температуру до 145 К по измерениям инфракрасного излучения Ю. и на более высокие значения – до 170 К в сантиметровом радиодиапазоне. В отдельных местах тёмных полос инфракрасное излучение в очень длинных волнах приводит к значениям температуры от 200 до 270 К. Рекордно высокая температура 310 К. была обнаружена в одном тёмном пятне (6 х 12 тыс. км ) близ экватора. Такая температура может быть обусловлена только потоком тепла из недр планеты, превышающим поток, приходящий от Солнца, в 2 раза.

  В облачной структуре Ю. существуют более или менее постоянные образования, примером которых служит Большое красное пятно (БКП), расположенное на широте около 22° в Южной тропической зоне. БКП имеет форму овала длиной до 40000 км и шириной около 13000 км . Цвет его – красный, но бывают годы, когда оно лишь с трудом выделяется на белом фоне зоны. Эффекты вращения и вертикальные движения в атмосфере в сочетании с различными уровнями облаков обусловливают сложную зависимость видимых систематических движений на разных удалениях от экватора. Периоды вращения P I и P II лишь в среднем описывают вращение атмосферы Ю. В действительности же систематические направленные ветры, действующие в той или иной полосе или зоне, приводят к сильно отличающимся значениям периода вращения.

  Химический состав атмосферы Ю. определяется спектроскопически. По сильным полосам поглощения раньше всего в атмосфере Ю. были обнаружены метан CH4 и аммиак NH3 . Позднее по слабым полосам в инфракрасной области спектра был обнаружен молекулярный водород H2 , затем пары воды H2 O, молекулы ацетилена C2 H2 , этана C2 H6 , фосфина PH3 и, наконец, окиси углерода CO.

  Тёмные полосы Ю. имеют аэрозольную природу и состоят из частиц диаметром 0,2—0,3 мкм . Над уровнем, где атмосферное давление составляет 1 атм (к нему относятся приведённые выше геометрические размеры Ю.), располагаются кристаллы аммиака. Несколько ниже этого уровня находятся твёрдые частицы полисульфидов, ещё ниже – ледяные кристаллики воды и, наконец, на 60 км ниже этого уровня – взвешенные капли раствора аммиака в воде.

  Внутреннее строение Ю. Существуют несколько моделей строения Ю. при разных предположениях о его химическом составе. Вследствие большой силы тяжести на Ю. давление газов возрастает с глубиной очень быстро и уже на расстоянии 10 тыс. км от поверхности становится настолько большим, что преобладающий газ (водород) изменяет своё состояние и переходит из нормальной молекулярной фазы в металлическую. С ростом температуры по мере приближения к центру планеты металлический водород расплавляется (температура вблизи центра Ю. приближается к 20 000 К при давлении порядка 100 млн. атм и плотности 20—30 г/см3 ). В некоторых моделях Ю. предполагается существование слоя льда (H2 O) значительной толщины, но лишь вблизи поверхности, где температура невысока.

  По-видимому, Ю. имеет твёрдую оболочку сравнительно недалеко от поверхности. Предположение о существовании такой оболочки могло бы объяснить магнитное поле, жестко вращающееся вместе с планетой, и неоднородности тепловых потоков, проявляющиеся в многочисленных деталях полос и особенно в длительно существующих БКП, вращающихся почти с тем же периодом, что и магнитное поле Ю.

  Магнитное поле Ю. обнаруживается по сильному радиоизлучению, особенно интенсивному в дециметровом и декаметровом диапазонах. Дециметровые волны исходят из околопланетного пространства и представляют собой синхротронное излучение электронов, захваченных магнитосферой Ю. в радиационные пояса, подобные земным. Декаметровое излучение (на волне 7,5 м ) имеет характер шумовых бурь, длящихся от нескольких часов до нескольких минут. Излучение направлено и исходит из определённых малых участков поверхности Ю. Из повторяемости радиовсплесков следует, что их источники вращаются с периодом P III = 9 ч 55 мин 30 сек . С периодом P III изменяется также дециметровое излучение. Именно этот период приписывают вращению твёрдого слоя, собственно образующего поверхность Ю. Природа твёрдого слоя Ю. пока ещё (70-е гг.) неясна. Его верхняя граница должна находиться вблизи видимой поверхности, нижняя же граница может быть расположена там, где металлический водород переходит от твёрдой фазы к жидкой. На этой границе и в глубине жидкого ядра возникают электрические токи, являющиеся причиной магнитного поля Ю. Напряжённость магнитного поля Ю. 4 э. Направление магнитной оси Ю. составляет угол около 10° с его осью вращения.

  Магнитосфера Ю. имеет очень большие размеры. В ближайших к планете областях (до 20 радиусов) она имеет явно выраженный дипольный характер и содержит радиационные пояса, в которых движутся захваченные полем электроны, обладающие энергией свыше 6 Мэв . Их взаимодействие с полем порождает дециметровое синхротронное излучение, В более отдалённых областях средняя магнитосфера простирается до 60 планетных радиусов и деформирована вращением. Здесь возможны плазменные истечения и колебания, излучающие в декаметровом диапазоне. Ещё дальше, до 90—100 планетных радиусов, находится внешняя магнитосфера, простирающаяся до магнито-паузы, размеры которой изменчивы. С ночной стороны она простирается за орбиту Сатурна. Все 5 ближайших к Ю. его спутников постоянно охвачены средней магнитосферой. Ближайший большой спутник – Ио обладает, по-видимому, своим магнитным полем и существенно влияет на частоту радиовсплесков Ю.

  Спутники. Известны 13 спутников Ю. Последний из них Юпитер XIII, открыт в 1974. Первые 4 самых больших спутника были открыты Г. Галилеем в 1610. Пятый спутник – Юпитер V, открытый в 1892, почти три столетия спустя, – самый близкий к планете, он удалён от планеты всего лишь на 2,54 экваториальных радиуса Ю. Все эти спутники движутся практически по круговым орбитам, плоскости которых совпадают с плоскостью экватора Ю. Их периоды обращения – от 12 ч у Юпитера V до 16,8 сут у Юпитера IV. Все остальные спутники Ю., открытые в 20 в., удалены от планеты на большие расстояния. В 1976 были заново утверждены названия спутников. Почти все они взяты из мифологии среди персонажей, так или иначе связанных с деятельностью Юпитера (первые 4 спутника были названы ещё Галилеем). Ниже приведены назв. спутников; в скобках даны их радиусы в км и видимые звёздные величины в противостоянии (1976):

  I – Ио (1820; 4,9); II – Европа (1530; 5,3); III – Ганимед (2610: 4,6); IV – Каллисто (2450; 5,6); V – Амальтея (120; 13); VI – Гамалия (~ 80; 14,2); VII – Элара (~ 50; 17); VIII – Пасифея (~12; 18); IX – Синопа (~10; 18,6); Х – Лизифоя (~8; 18,8); XI – Карма (~9; 18,6); XII – Ананке (~8; 18,7); XIII – Леда (~5; 20).

  Четыре галилеевых спутника по размерам своим приближаются к планетам (Ганимед и Каллисто больше Меркурия). Периоды их осевого вращения и обращения вокруг Ю. совпадают. Средние плотности больше, чем у Ю.: 2,89; 3,20; 2,07 и 1,54 г/см3 . Все они имеют низкую температуру, близкую к равновесной. Их альбедо довольно высокое, но ниже, чем у Ю., что указывает скорее на особенности поверхности, чем на наличие мощной атмосферы. Действительно, радарные и инфракрасные наблюдения позволили установить, что поверхность их составлена из льда или смеси льда и скал, т. к. отмечаются значительные неровности. «Пионер-10» и «Пионер-11» сфотографировали Ганимеда с близкого расстояния, причём были обнаружены устойчивые тёмные и светлые образования. Ио имеет атмосферу и значительную ионосферу. По близкому совпадению плоскостей первых пяти спутников с плоскостью экватора Ю. можно полагать, что эти спутники образовались одновременно с планетой из одного сгустка первичного вещества. Что касается остальных спутников, то они скорее всего в прошлом являлись астероидами и были захвачены Ю.

  Лит.: Мороз В. И., Физика планет, М., 1967; Физические характеристики планет-гигантов, А.-А., 1971; Жарков В. Н., Внутреннее строение Земли, Луны и планет, М., 1973; Долгинов Ш. Ш., Магнетизм планет, М., 1974; Мартынов Д. Я., Планеты. Решенные и нерешенные проблемы, М., 1970; «3емля и Вселенная», ст. и заметки о Ю. за. годы 1974—77.

  Д. Я. Мартынов.


    Ваша оценка произведения:

Популярные книги за неделю