355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЯД) » Текст книги (страница 8)
Большая Советская Энциклопедия (ЯД)
  • Текст добавлен: 7 октября 2016, 02:11

Текст книги "Большая Советская Энциклопедия (ЯД)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 8 (всего у книги 10 страниц)

  При возбуждении ядра до энергии чуть ниже высоты барьера, разделяющего две потенциальные ямы, начинается сильное смешение состояний с разной равновесной деформацией. Смешение состояний с разной формой ядра приводит к появлению групп делительных резонансов, разделённых расстояниями, равными расстояниям между уровнями составного ядра в седловой точке.

  Сильное влияние оболочечных эффектов на барьер деления позволяет ожидать некоторых особенностей у ещё не синтезированных трансурановых элементов. Согласно капельной модели, атомные ядра с  должны быть неустойчивы и распадаться спонтанным делением за время ~10-21 сек. Учёт влияния нуклонных оболочек на барьер деления приводит к выводу, что появление новых заполненных оболочек (по-видимому, с Z = 114 и N = 184) будет сопровождаться возрастанием высоты барьера деления до нескольких Мэв. На этом основано предположение о существовании «острова стабильности» сверхтяжёлых трансурановых элементов вблизи Z = 114. Не исключено, что для некоторых изотопов этого «острова» время жизни превысит десятки тысяч лет. Следует, однако, иметь в виду, что пока наличие островов стабильности остаётся чисто гипотетической возможностью, опирающейся на определённые предположения о деталях структуры ядер сверхтяжёлых трансурановых элементов.

  Лит.: Hahn О., Strassman F., «Naturwissenschaften», 1939, Jg 27, № 1, S. 11; Петржак К. А., Флеров Г. Н., «Журнал экспериментальной и теоретической физики», 1940, т. 10, в. 9—10, с. 1013; Френкель Я. И., там же, 1939, т. 9, в. 6, с. 641; Петржак К. А., Флеров Г. Н., «Успехи физических наук», 1961, т. 73, в. 4, с. 655; Струтинский В. М., Деление ядер, «Природа», 1976, №9; Лихман Р. Б., Деление ядра, в кн.: Физика атомного ядра и плазмы, пер. с англ., М., 1974.

Рис. 1. Деление ядра 235 U, содержащего 92 протона и 143 нейтрона. Нейтрон, захватываясь ядром 235 U, превращает его в 236 U; возникающая при этом деформация приводит к разрыву ядра.

Рис. 6. Зависимость сечения деления 235 U (1) и 238 U (2) от энергии нейтронов.

Рис. 4. Следы осколков деления, выявленные при помощи диэлектрического детектора.

Рис. 2. Барьер деления и последовательность фигур, проходимых делящимся атомным ядром.

Рис. 5. Спектр масс осколков деления ядрa 235 U при захвате медленных нейтронов.

Рис. 7. Предполагаемая форма потенциального барьера в случае спонтанного деления из изомерного состояния.

Рис. 3. Зависимость периодов Т спонтанного деления ядер в основном состоянии от отношения Z2 /A.

Ядра галактик

Я'дра гала'ктик , компактные массивные сгущения вещества в центральных частях многих галактик. Оптическая светимость Я. г. колеблется в широких пределах и, как правило, ядра ярче у галактик, имеющих большую светимость. Обычно светимость Я. г. составляет несколько процентов от светимости галактики, в отдельных случаях сравнима с её полным излучением, а у большинства галактик ядро в оптическом диапазоне вообще не наблюдается. Известны галактики, лишённые ядер, например Большое и Малое Магеллановы Облака – спутники нашей звёздной системы (Галактики), карликовые галактики типа Скульптора и Печи.

  В центральных областях ряда достаточно ярких (абсолютная звёздная величина меньше —15) и массивных галактик наблюдаются крупные эллипсоидальной формы сгущения, получившие название «балдж» (от англ. bulge – выпуклость). Я. г. располагается внутри балджа и на его фоне выделяется как более яркое образование. В балджах и Я. г. обнаружены звёзды, газ и пыль. Внутри собственно ядер иногда видны звездообразные ядрышки – керны (некоторые астрономы именно их называют Я. г.). Керны обнаружены пока лишь в 4 ближайших галактиках: Туманности Андромеды, в двух её спутниках и в спиральной галактике МЗЗ. Размеры кернов составляют несколько nc , массы – 107 —108   (масс Солнца), их абсолютные звёздные величины заключены в пределах от —9 до —12. Керны вращаются гораздо быстрее центральных областей галактик и имеют сплюснутую форму (рис. 1 ).

  До середины 20 в. изучению Я. г. уделяли сравнительно мало внимания. В 1958 В. А. Амбарцумян подчеркнул наличие у Я. г. особых свойств и указал на важную роль ядер в эволюции галактик. Интерес к Я. г. возрос в связи с открытием активности ядер, проявляющейся: в мощном нетепловом излучении, охватывающем практически все диапазоны (рис. 2 ) от метровых радиоволн до жесткого рентгеновского излучения (оно связано с наличием частиц очень высоких энергий); в переменности потока излучения; в бурных движениях газа; в извержении струй и сгустков (конденсаций) вещества. Данные о мощности излучения Я. г. в некоторых диапазонах длин волн приведены в следующей таблице.


Мощность излучения, эрг/сек
Тип объекта l=22 мкм , инфракрасный диапазон l=2—5А, рентгеновский диапазон Сантиметровый диапазон радиоволн
Квазар 3С 273 5,1·104510464,5·1041
Радиогалактика NGC 1275. 3,8·10443·10445,6·1040
Эллиптическая галактика M87 1,4·10433,3·1042~1039
Сейфертовская галактика NGC 4151 1,36·10431,7·1042~1038
Ядро нашей Галактики 5·10391,4·1037~1034

  Среди спиральных галактик наибольшая активность ядер наблюдается у так называемых сейфертовских галактик, среди эллиптических галактик – у N-галактик и радиогалактик . Особенно высока активность квазаров , которые по современным представлениям являются ядрами далёких гигантских галактик. Источники энергии, ответственные за активность Я. г., как и процессы, приводящие к ускорению в Я. г. заряженных частиц до релятивистских скоростей, пока окончательно не установлены. Т. о., Я. г. – не просто массивные гравитационно связанные компактные комплексы, состоящие из звёзд, межзвёздного газа и пыли, а образования, обладающие рядом специфических свойств. Существует несколько гипотез о природе активности Я. г. и квазаров.

  1) Я. г. – компактное (~ 1 nc ) массивное (~107 ) звёздное скопление, в котором поддерживается звездообразование за счёт попадания в ядерную область газа или за счёт слияния мелких звёзд в более крупные при частых столкновениях в условиях большой плотности звёзд в ядрах (~10 nc3 ). Массивные звёзды быстро эволюционируют, вспыхивают как сверхновые и превращаются в нейтронные звёзды или «чёрные дыры». При этом выделяется гравитационная энергия, обусловливающая активность Я. г. Нейтронные звёзды, проявляющие себя как пульсары , могут порождать потоки релятивистских частиц, необходимые для достижения наблюдаемой мощности излучения. За активность Я. г. могут быть ответственны также «вспышки» звездообразования – рождение большого числа (десятки звёзд в год) молодых горячих звёзд, которые своим мощным ультрафиолетовым и корпускулярным излучением имитируют активность ядер.

  2) Я. г. – компактное массивное быстровращающееся тело (так называемый ротатор или спинор), обладающее сильным магнитным (квазидипольным) полем. Это поле, подобно полю пульсаров, ускоряет частицы до релятивистских скоростей и обусловливает их мощное нетепловое излучение. Энергия в этом случае черпается из запасов энергии вращения спинора.

  3) Я. г. – «чёрная дыра» с массой М > 103 , на которую происходит падение (аккреция) окружающего газа и звёзд. В принципе механизм аккреции может обусловить выделение гравитационной энергии в количестве 1026 (М/) эрг , достаточном для объяснения активности Я. г.

  4) По гипотезе В. А. Амбарцумяна, активность Я. г. обусловлена распадом находящегося в них гипотетического «дозвёздного вещества». Распад происходит взрывообразно и сопровождается выделением значительной энергии. По Амбарцумяну, активность Я. г. играет определяющую роль в эволюции галактик.

  Различия в активности Я. г. указывают, по-видимому, что у галактик разных типов она может достигать разных степеней и что в процессе эволюции галактик стадия активности их ядер может повторяться.

  Центральную область нашей Галактики исследуют методами радио-, инфракрасной и рентгеновской астрономии, т. к. из-за сильного поглощения света межзвёздной пылью оптические исследования галактического центра невозможны. Ядро Галактики совпадает с западным компонентом радиоисточника Стрелец А. В центральной области ядра и вблизи неё обнаружены компактные источники нетеплового радиоизлучения (~ 0,01 nc в поперечнике). По радиоизлучению ионизованного водорода установлено, что в центре Галактики есть область расширяющегося газа поперечником ~ 300 nc и более протяжённая (~ 600 nc ) область инфракрасного излучения (облака пыли). В центральной области есть также звёздное скопление эллипсоидальной формы с размерами полуосей 800 х 300 nc , масса которого ~109 .

  Ядро Галактики окружено вращающимся газовым диском (диаметром 1600 nc и средней толщиной около 400 nc ). По своим свойствам ядро Галактики относится к активным, что резко отличает её от ближайшей спиральной галактики Туманность Андромеды, у которой признаков активности в ядре не обнаружено.

  Лит.: Происхождение и эволюция галактик и звезд. Сб. ст., под ред. С. Б. Пикельнера, М., 1976.

  Ю. Н. Дрожжин-Лабинский, Б. В. Комберг.

Рис. 2. Зависимость логарифма спектральной плотности потока Fn от логарифма частоты n для радиогалактики Центавр А (подобный спектр характерен для всех активных ядер галактик).

Рис. 1. Скорость вращения V (км /сек ) вещества Туманности Андромеды в зависимости от расстояния до её центра (расстояние r дано в угловых сек и мин , а также в пс и кпс ): а – кривая вращения для всей Галактики, б – для центральной области.

Ядра конденсации

Я'дра конденса'ции , мельчайшие нейтральные частицы или ионы, на которых происходит конденсация паров. Только благодаря наличию Я. к. в атмосфере возможны конденсация водяного пара и образование облаков . Я. к. служат гигроскопические частицы, содержащие хлориды, сульфиты, сульфиды, нитраты и нитриты. Их размер 10-7 10-5см , а концентрация в среднем в 1 см3 над океаном 103 , над сушей вне городов 104 , а в городах ~ 1,5·105 С высотой концентрация Я. к. обычно уменьшается.

Ядрин

Я'дрин , город, центр Ядринского района Чувашской АССР. Пристань на левом берегу р. Суры, в 60 км к С. от ж.-д. станции Шумерля (на линии Муром – Канаш) и в 87 км к Ю.-З. от г. Чебоксары. Спиртовой, маслосыродельный, кирпичный заводы, швейная фабрика, пище– и промкомбинаты.

Ядрище

Ядри'ще (археол.), см. Нуклеус .

Ядро атомное

Ядро' а'томное , центральная массивная часть атома, вокруг которой по квантовым орбитам обращаются электроны. Масса Я. а. примерно в 4·103 раз больше массы всех входящих в состав атома электронов. Размер Я. а. очень мал (10-12 —10-13см ), что приблизительно в 105 раз меньше диаметра всего атома. Электрический заряд положителен и по абсолютной величине равен сумме зарядов атомных электронов (т. к. атом в целом электрически нейтрален).

  Существование Я. а. было открыто Э. Резерфордом (1911) в опытах по рассеянию a-частиц при прохождении их через вещество. Обнаружив, что a-частицы чаще, чем ожидалось, рассеиваются на большие углы, Резерфорд предположил, что положительный заряд атома сосредоточен в малом по размерам Я. а. (до этого господствовали представления Дж. Томсона , согласно которым положительный заряд атома считался равномерно распределённым по его объёму). Идея Резерфорда была принята его современниками не сразу (главным препятствием была убеждённость в неизбежном падении атомных электронов на ядро из-за потери энергии на электромагнитное излучение при движении по орбите вокруг Я. а.). Большую роль в её признании сыграла знаменитая работа Н. Бора (1913), положившая начало квантовой теории атома . Бор постулировал стабильность орбит как исходный принцип квантования движения атомных электронов и из него затем вывел закономерности линейчатых оптических спектров, объяснявших обширный эмпирический материал (Бальмера серия и др.). Несколько позже (в конце 1913) ученик Резерфорда Г. Мозли экспериментально показал, что смещение коротковолновой границы линейчатых рентгеновских спектров атомов при изменении порядкового номера Z элемента в периодической системе элементов соответствует теории Бора, если допустить, что электрический заряд Я. а. (в единицах заряда электрона) равен Z. Это открытие полностью сломало барьер недоверия: новый физический объект – Я. а. оказался прочно связанным с целым кругом на первый взгляд разнородных явлений, получивших теперь единое и физически прозрачное объяснение. После работ Мозли факт существования Я. а. окончательно утвердился в физике.

  Состав ядра. Ко времени открытия Я. а. были известны только две элементарные частицыпротон и электрон . В соответствии с этим считалось вероятным, что Я. а. состоит из них. Однако в конце 20-х гг. 20 в. протонно-электронная гипотеза столкнулась с серьёзной трудностью, получившей название «азотной катастрофы»: по протонно-электронной гипотезе ядро азота должно было содержать 21 частицу (14 протонов и 7 электронов), каждая из которых имела спин1 /2 . Спин ядра азота должен был быть полуцелым, а согласно данным по измерению оптических молекулярных спектров спин оказался равным 1.

  Состав Я. а. был выяснен после открытия Дж. Чедвиком (1932) нейтрона . Масса нейтрона, как выяснилось уже из первых экспериментов Чедвика, близка к массе протона, а спин равен 1 /2 (установлено позже). Идея о том, что Я. а. состоит из протонов и нейтронов, была впервые высказана в печати Д. Д. Иваненко (1932) и непосредственно вслед за этим развита В. Гейзенбергом (1932). Предположение о протонно-нейтронном составе ядра получило в дальнейшем полное экспериментальное подтверждение. В современной ядерной физике протон (p) и нейтрон (n) часто объединяются общим названием нуклон. Общее число нуклонов в Я. а. называется массовым числом А , число протонов равно заряду ядра Z (в единицах заряда электрона), число нейтронов N=А – Z . У изотопов одинаковое Z, но разные А и N , у ядер – изобар одинаковое А и разные Z и N .

  В связи с открытием новых частиц, более тяжёлых, чем нуклоны, т. н. нуклонных изобар (см. Резонансы ), выяснилось, что они также должны входить в состав Я. а. (внутриядерные нуклоны, сталкиваясь друг с другом, могут превращаться в нуклонные изобары). В простейшем ядре – дейтроне , состоящем из одного протона и одного нейтрона, нуклоны ~ 1% времени должны пребывать в виде нуклонных изобар. Ряд наблюдаемых явлений (особенно ядерных реакций под действием частиц высоких энергий) свидетельствует в пользу существования таких изобарных состояний в ядрах. Помимо нуклонов и нуклонных изобар, в ядрах периодически на короткое время (10-23 —10-24сек ) появляются мезоны , в том числе легчайшие из них – p-мезоны (см. Пи-мезоны ). Взаимодействие нуклонов сводится к многократным актам испускания мезона одним из нуклонов и поглощения его другим. Возникающие т. о. обменные мезонные токи сказываются, в частности, на электромагнитных свойствах ядер. Наиболее отчётливое проявление обменных мезонных токов обнаружено в реакции расщепления дейтрона электронами высоких энергий и g-квантами.

  Взаимодействие нуклонов. Силы, удерживающие нуклоны в ядре, называются ядерными. Это самые сильные из всех известных в физике взаимодействий (см. Сильные взаимодействия ). Ядерные силы, действующие между двумя нуклонами в ядре, по порядку величины в сто раз интенсивнее электростатического взаимодействия между протонами. Важным свойством ядерных сил является их изотопическая инвариантность , т. е. независимость от зарядового состояния нуклонов: ядерные взаимодействия двух протонов, двух нейтронов или нейтрона и протона одинаковы, если одинаковы состояния относительного движения этих пар частиц. Величина ядерных сил зависит от расстояния между нуклонами, от взаимной ориентации их спинов, от ориентации спинов относительно орбитального момента вращения и радиуса-вектора, проведённого от одной частицы к другой. В соответствии с этим различают ядерные силы центральные, спин-спиновые, спин-орбитальные и тензорные.

  Ядерные силы характеризуются определённым радиусом действия: потенциал этих сил убывает с расстоянием r между частицами быстрее, чем r-2 , а сами силы – быстрее, чем r-3 . Из рассмотрения физической природы ядерных сил следует, что они должны убывать с расстоянием экспоненциально. Радиус действия ядерных сил определяется т. н. комптоновской длиной волны r мезонов, которыми обмениваются нуклоны в процессе взаимодействия:

,

  здесь m, – масса мезона,  – Планка постоянная , с – скорость света в вакууме. Наибольший радиус действия имеют силы, обусловленные обменом p-мезонами. Для них r = 1,41 ф (1 ф= 10-13см ). Межнуклонные расстояния в ядрах имеют именно такой порядок величины, однако существ, вклад в ядерные силы вносят обмены и более тяжёлыми мезонами (m-, r-, w-мезоны и др.). Точная зависимость ядерных сил между двумя нуклонами от расстояния и относит, вклад ядерных сил, обусловленных обменом мезонов разных типов, с определённостью не установлены. В многонуклонных ядрах возможны силы, которые не сводятся к взаимодействию только пар нуклонов. Роль этих т. н. многочастичных сил в структуре ядер остаётся пока не выясненной.

  Размеры ядер зависят от числа содержащихся в них нуклонов. Средняя плотность числа р нуклонов в ядре (их число в единице объёма) для всех многонуклонных ядер (A > 0) практически одинакова. Это означает, что объём ядра пропорционален числу нуклонов А , а его линейный размер 1/3 . Эффективный радиус ядра R определяется соотношением:

R=а A1/3 , (2)

  где константа а близка к Гц , но отличается от него и зависит от того, в каких физических явлениях измеряется R . В случае так называемого зарядового радиуса ядра, измеряемого по рассеянию электронов на ядрах или по положению энергетических уровней m-мезоатомов : а = 1,12 ф . Эффективный радиус, определённый из процессов взаимодействия адронов (нуклонов, мезонов, a-частиц и др.) с ядрами, несколько больше зарядового: от 1,2 ф до 1,4 ф .

  Плотность ядерного вещества фантастически велика сравнительно с плотностью обычных веществ: она равна примерно 1014г /см3 . В ядре r почти постоянно в центральной части и экспоненциально убывает к периферии. Для приближённого описания эмпирических данных иногда принимают следующую зависимость r от расстояния r от центра ядра:

.

  Эффективный радиус ядра R равен при этом R + b. Величина b характеризует размытость границы ядра, она почти одинакова для всех ядер (» 0,5 ф ). Параметр r – удвоенная плотность на «границе» ядра, определяется из условия нормировки (равенства объёмного интеграла от р числу нуклонов А ). Из (2) следует, что размеры ядер варьируются по порядку величины от 10-13см до 10-12см для тяжёлых ядер (размер атома ~ 10-8см ). Однако формула (2) описывает рост линейных размеров ядер с увеличением числа нуклонов лишь огрублённо, при значительном увеличении А . Изменение же размера ядра в случае присоединения к нему одного или двух нуклонов зависит от деталей структуры ядра и может быть иррегулярным. В частности (как показали измерения изотопического сдвига атомных уровней энергии), иногда радиус ядра при добавлении двух нейтронов даже уменьшается.

  Энергия связи и масса ядра. Энергией связи ядра xсв называется энергия, которую необходимо затратить на расщепление ядра на отдельные нуклоны. Она равна разности суммы масс входящих в него нуклонов и массы ядра, умноженной на c2 (см. Относительности теория ):

xсв = (Zmp + NmnМ ) c2 . (4)

  Здесь mp , mn и M – массы протона, нейтрона и ядра. Замечательной особенностью ядер является тот факт, что xсв приблизительно пропорциональна числу нуклонов, так что удельная энергия связи xсв /А слабо меняется при изменении А (для большинства ядер xсв /А » 6—8 Мэв ). Это свойство, называемое насыщением ядерных сил, означает, что каждый нуклон эффективно связывается не со всеми нуклонами ядра (в этом случае энергия связи была бы пропорциональна A2 при A»1), а лишь с некоторыми из них. Теоретически это возможно, если силы при измененном расстоянии изменяют знак (притяжение на одних расстояниях сменяется отталкиванием на других). Объяснить эффект насыщения ядерных сил, исходя из имеющихся данных о потенциале взаимодействия двух нуклонов, пока не удалось (известно около 50 вариантов ядерного межнуклонного потенциала, удовлетворительно описывающих свойства дейтрона и рассеяние нуклона на нуклоне; ни один из них не может описать эффект насыщения ядерных сил в многонуклонных ядрах).

  Независимость плотности р и удельной энергии связи ядер от числа нуклонов А создаёт предпосылки для введения понятия ядерной материи (безграничного ядра). Физическими объектами, отвечающими этому понятию, могут быть не только макроскопические космические тела, обладающие ядерной плотностью (например, нейтронные звёзды ), но, в определённом аспекте, и обычные ядра с достаточно большими А .

  Зависимость xсв от А и Z для всех известных ядер приближённо описывается полуэмпирической массовой формулой (впервые предложенной немецким физиком К. Ф. Вейцзеккером в 1935):

. (5)

  Здесь первое (и наибольшее) слагаемое определяет линейную зависимость xсв от A; второй член, уменьшающий xсв , обусловлен тем, что часть нуклонов находится на поверхности ядра. Третье слагаемое – энергия электростатического (кулоновского) отталкивания протонов (обратно пропорциональна радиусу ядра и прямо пропорциональна квадрату его заряда). Четвёртый член учитывает влияние на энергию связи неравенства числа протонов и нейтронов в ядре, пятое слагаемое d(A, Z) зависит от чётности чисел А и Z; оно равно:

 (6)

  Эта сравнительно небольшая поправка оказывается, однако, весьма существенной для ряда явлений и, в частности, для процесса деления тяжёлых ядер. Именно она определяет делимость ядер нечётных по А изотопов урана под действием медленных нейтронов (см. Ядра атомного деление ), что и обусловливает выделенную роль этих изотопов в ядерной энергетике . Все константы, входящие в формулу (5), подбираются так, чтобы наилучшим образом удовлетворить эмпирическим данным. Оптимальное согласие с опытом достигается при e = 14,03 Мэв , a = 13,03 Мэв , b = 0,5835 Мэв , g= 77,25 Мэв . Формулы (5) и (6) могут быть использованы для оценки энергий связи ядер, не слишком удалённых от полосы стабильности ядер. Последняя определяется положением максимума xсв как функции Z при фиксированном А . Это условие определяет связь между Z и А для стабильных ядер:

Z=A (1,98+0,15A2/3 )-1 (7)

  Формулы типа (5) не учитывают квантовых эффектов, связанных с деталями структуры ядер, которые могут приводить к скачкообразным изменениям xсв вблизи некоторых значений А и Z (см. ниже).

  Структурные особенности в зависимости xсв от A и Z могут сказаться весьма существенно в вопросе о предельном возможном значении Z, т. е. о границе периодической системы элементов. Эта граница обусловлена неустойчивостью тяжёлых ядер относительно процесса деления. Теоретические оценки вероятности спонтанного деления ядер не исключают возможности существования «островов стабильности» сверхтяжёлых ядер вблизи Z = 114 и Z = 126.

  Квантовые характеристики ядер. Я. а. может находиться в разных квантовых состояниях, отличающихся друг от друга значением энергии и других сохраняющихся во времени физических величин. Состояние с наименьшей возможной для данного ядра энергией называется основным, все остальные – возбуждёнными. К числу важнейших квантовых характеристик ядерного состояния относятся спин I и чётность Р. Спин I – целое число у ядер с чётным А и полуцелое при нечётном. Чётность состояния Р = ± 1 указывает на изменение знака волновой функции ядра при зеркальном отображении пространства. Эти две характеристики часто объединяют единым символом IP или I± . Имеет место следующее эмпирическое правило: для основных состояний ядер с чётными А и Z спин равен 0, а волновая функция чётная (IP = 0+ ). Квантовое состояние системы имеет определённую чётность Р, если система зеркально симметрична (т. е. переходит сама в себя при зеркальном отражении). В ядрах зеркальная симметрия несколько нарушена из-за наличия слабого взаимодействия между нуклонами, не сохраняющего чётность (его интенсивность по порядку величины ~ 10-5 % от основных сил, связывающих нуклоны в ядрах). Однако обусловленное слабым взаимодействием смешивание состояний с разной чётностью мало и практически не сказывается на структуре ядер.

  Помимо I и Р, ядерные состояния характеризуются также квантовыми числами , возникающими вследствие динамической симметрии ядерных взаимодействий. Важнейшей из них является изотопическая инвариантность ядерных сил. Она приводит к появлению у лёгких ядер (Z £ 20) квантового числа, называется изотопическим спином , или изоспином. Изоспин ядра T – целое число при чётном A и полуцелое – при нечётном. Различные состояния ядра могут иметь разный изоспин: T ³ (А– 2Z)/2. Известно эмпирическое правило, согласно которому изоспины основных состояний ядер минимальны, т. е. равны (А – 2Z)/2. Изоспин характеризует свойства симметрии волновой функции данного состояния ядра относительно замены p Û n. С изоспином связано существование изотопических ядерных мультиплетов или аналоговых состояний у ядер с одним и тем же А. Эти состояния, хотя и принадлежат разным ядрам (отличающимся по Z и N), имеют одинаковую структуру и, следовательно, одинаковые IP и Т. Число таких состояний равно 2T + 1. Легчайшее после протона ядро – дейтрон имеет изоспин Т = 0 и поэтому не имеет аналогов. Ядра 31 H и 32 He образуют изотопический дублет с T =1 /2 . В случае более тяжёлых ядер членами одного изотопического мультиплета являются как основные, так и возбуждённые состояния ядер. Это связано с тем, что при изменении Z меняется кулоновская энергия ядра (она растет с числом протонов), и, кроме того, при замене р Û n на полной энергии ядра сказывается разность масс протона и нейтрона. Примером изотопического мультиплета, содержащим как основные, так и возбуждённые состояния, является триплет с Т = 1: 148 C (осн) – 147 N (2,31 Мэв ) ® 148 O (осн) (в скобках указана энергия возбуждения). Полуразность числа нейтронов и протонов, называется проекцией изоспина, обозначается символом Тз . Для членов изотопического мультиплета Тз принимает T + 1 значений, отличающихся друг от друга на единицу и лежащих в интервале —Т£ Тз £ T. Величина Тз для ядер определена так, что для протона Тз = —1 /2 , а для нейтрона Тз = + 1 /2 . В физике же элементарных частиц протону приписывается положительное значение Тз , а нейтрону – отрицательное. Это чисто условное различие в определениях вызвано соображениями удобства (при избранном в ядерной физике определении Тз эта величина положительна для большинства ядер).

  «Чистота» состояний лёгких ядер по изоспину велика – примеси по порядку величины не превосходят 0,1—1%. Для тяжёлых ядер изоспин не является хорошим квантовым числом (состояния с разным изоспином смешиваются главным образом из-за электростатического взаимодействия протонов). Тем не менее, ощутимые следы изотопической симметрии остаются и в этом случае. Она проявляется, в частности, в наличии так называемых аналоговых резонансов (аналоговых состояний, не стабильных относительно распада с испусканием нуклонов).

  Кроме I, P и T, ядерные состояния могут характеризоваться также квантовыми числами, связанными с конкретной моделью, привлекаемой для приближённого описания ядра (см. ниже).

  Электрические и магнитные моменты ядер. В различных состояниях ядро может иметь разные по величине магнитные дипольные и квадрупольные электрические моменты. Последние могут быть отличны от нуля только в том случае, когда спин I > 1 /2 . Ядерное состояние с определённой чётностью P не может обладать электрическим дипольным моментом. Более того, даже при несохранении чётности для возникновения электрического дипольного момента необходимо, чтобы взаимодействие нуклонов было необратимо во времени (T – неинвариантно). Поскольку по экспериментальным данным Т-неинвариантные межнуклонные силы (если они вообще есть) по меньшей мере в 103 раз слабее основных ядерных сил, а эффекты несохранения чётности также очень малы, то электрические дипольные моменты либо равны нулю, либо столь малы, что их обнаружение находится вне пределов возможности современного ядерного эксперимента. Ядерные магнитные дипольные моменты имеют порядок величины ядерного магнетона. Электрические квадрупольные моменты изменяются в очень широких пределах: от величин порядка е·10-27см2 (лёгкие ядра) до е·10-23см2 (тяжёлые ядра, е – заряд электрона). В большинстве случаев известны лишь магнитные и электрические моменты основных состояний, поскольку они могут быть измерены оптическими и радиоспектроскопическими методами (см. Ядерный магнитный резонанс ). Значения моментов существенно зависят от структуры ядра, распределения в нём заряда и токов. Объяснение наблюдаемых величин магнитных дипольных и электрических квадрупольных моментов является пробным камнем для любой модели ядра.

  Структура ядра и модели ядер. Многочастичная квантовая система с сильным взаимодействием, каковой является Я. а., с теоретической точки зрения объект исключительно сложный. Трудности связаны не только с количественно точными вычислениями физических величин, характеризующих ядро, но даже с качественным пониманием основных свойств ядерных состояний, спектра энергетических уровней, механизма ядерных реакций. Тяжёлые ядра содержат много нуклонов, но всё же их число не столь велико, чтобы можно было с уверенностью воспользоваться методами статистической физики , как это делается в теории конденсированных сред (см. Жидкость , Твёрдое тело ). К математическим трудностям теории добавляется недостаточная определённость исходных данных о ядерных силах. Поскольку межнуклонное взаимодействие сводится к обмену мезонами, объяснение свойств ядра в конечном счёте должно опираться на релятивистскую квантовую теорию элементарных частиц, которая сама по себе в современном её состоянии не свободна от внутренних противоречий и не может считаться завершенной. Хотя сравнительно небольшие в среднем скорости нуклонов в ядре (0,1 с) несколько упрощают теорию, позволяя строить её в первом приближении на основе нерелятивистской квантовой механики, ядерная задача многих тел остаётся пока одной из фундаментальных проблем физики. По всем этим причинам до сих пор, исходя из «первых принципов», рассматривалась только структура простейших ядер – дейтрона и трёхнуклонных ядер 3 H и 3 He. Структуру более сложных ядер пытаются понять с помощью ядерных моделей, в которых ядро гипотетически уподобляется какой-либо более простой и лучше изученной физической системе.


    Ваша оценка произведения:

Популярные книги за неделю