Текст книги "Большая Советская Энциклопедия (СХ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 1 (всего у книги 2 страниц)
Большая Советская Энциклопедия (СХ)
Схалкер Корнелис
Сха'лкер (Schalker) Корнелис (31.7. 1890, – 13.1.1944, Схевенинген, близ Гааги), деятель нидерландского рабочего движения. В 1914 вступил в Социал-демократическую рабочую партию, в 1916 перешёл в левую Социал-демократическую партию, с 1918 член компартии Нидерландов (КПН). С 1925 член ЦК КПН. В 1929—1930 секретарь окружного комитета КПН в провинции Южная Голландия. С 1930 политический секретарь ЦК КПН. В 1933—37 депутат парламента. На 7-м конгрессе Коминтерна (1935) избран кандидатом в члены ИККИ. В 1937—38 представитель КПН в ИККИ. С 1938 секретарь ЦК КПН. После оккупации Нидерландов немецко-фашистскими войсками (май 1940) вошёл (в октябре 1943) в нелегальное руководство партии. В ноябре 1943 схвачен и затем расстрелян гитлеровцами.
Схаутен Биллем Корнелис
Сха'утен, Схоутен (Schouten) Биллем Корнелис [1580(?), Хорн, провинция Северная Голландия, – 1625], голландский мореплаватель, начальник торговой экспедиции, посланной совместно с Я. Лемеромв 1615 западным путём в Индонезию. Его отчёт о кругосветном плавании, изданный в Амстердаме в 1618 под названием «Journal ou description du merveilleux vouage», многократно переиздавался. В честь С. названы открытые им острова близ северо-восточного побережья острова Новая Гвинея.
Схаутен Ян Арнольдус
Сха'утен (Schouten) Ян Арнольдус (р. 1883), нидерландский математик; см. Схоутен Я. А.
Схема (в конструкт. документации)
Схе'ма в конструкторской документации, документ, на котором условными графическими обозначениями показаны составные части изделия (или установки) и соединения или связи между ними. С. выполняются, как правило, без учёта масштаба и действительного пространственного расположения составных частей изделия. В зависимости от типа элементов изделий и вида связей между ними С. подразделяют на электрические, пневматические, гидравлические, кинематические и комбинированные; в соответствии с назначением различают С. структурные, функциональные, принципиальные, соединений, подключений, общие, расположения.
Структурная С. (блок-схема) определяет основные функциональные части изделия (установки), их назначение и взаимосвязи; она разрабатывается при проектировании (конструировании) изделия, раньше С. др. типов, и используется при изучении структуры изделия и программы его работы, а также во время его эксплуатации. Функциональная С. раскрывает процессы, протекающие в изделии и его отдельных частях; используется при изучении функциональных возможностей изделий, а также при их наладке, регулировке, контроле и ремонте. Принципиальная С. определяет полный состав элементов изделия и связей между ними и, как правило, даёт детальное представление о принципе работы изделия; служит основанием для разработки др. конструкторских документов, например электромонтажных чертежей, спецификации. С. соединений (внутренних и внешних) отображает связи составных частей изделия, способы прокладки, крепления или подсоединения проводов, кабелей или трубопроводов, а также места их присоединения или ввода. На С. подключений показывают внешние подключения изделия; эти С. используют при монтаже и эксплуатации комплексов. Общая С. определяет составные части комплекса (сложного изделия) и соединения их между собой на месте эксплуатации; предназначена преимущественно для общего ознакомления с комплексами. На С. расположения показывается относительное размещение (местоположение) составных частей установки или комплекса. В СССР порядок оформления С. устанавливается ГОСТами.
В. Н. Квасницкий.
Схема (набросок)
Схе'ма (от греч. schma – наружный вид, форма, набросок, очерк),
1) изображение, описание, изложение чего-либо в общих, главных чертах.
2) Чертёж, воспроизводящий обычно с помощью условных обозначений и без соблюдения масштаба основную идею какого-либо устройства, сооружения и т. д. См. также Схема в конструкторской документации.
«Схема тела»
«Схе'ма те'ла», отражение в сознании человека образа собственного тела (его контуров, размеров, границ, соотносительного положения частей тела, а также одежды, обуви и привычных предметов и средств деятельности – инструментов, протезов и т. п.). «С. т.» – это пластичное представление, которое непрерывно формируется и перестраивается у человека в течение его жизни. Понятие «С. т.» разрабатывается в связи с изучением различных психических нарушений (деперсонализация, нарушение восприятия правого и левого, неузнавание или пространственное отчуждение членов собственного тела вплоть до фантома ампутированных конечностей и образования «двойника») в целях топической диагностики (например, поражения правой теменной области), а также для решения практических задач протезирования. В авиационной и космической психологии понятием «С. т.» пользуются при разработке проблем ориентировки человека в пространстве (схемы «человек – корабль – окружающее пространство», иллюзии пространственного положения).
Лит.: Меерович Р. И., Расстройства «схемы тела» при психических заболеваниях, Л., 1948; Гиляровский В. А., Что такое «схема тела» в свете данных наших физиологов, «Вестник Академии медицинских наук СССР», 1958, № 10; Горбов Ф. Д., Проблемы космической психофизиологии, в сборнике: Человек вышел в космическое пространство, М., 1966.
Ф. Д. Горбов.
Схемотехника
Схемоте'хника, научно-техническое направление, охватывающее проблемы проектирования и исследования схем электронных устройств радиотехники и связи, вычислительной техники, автоматики и др. областей техники. Основная задача С. – синтез (определение структуры) электронных схем, обеспечивающих выполнение определённых функций, и расчёт параметров входящих в них элементов. Термин «С.» появился в 60-х гг. 20 в. в связи с разработкой унифицированных схем, пригодных одновременно для многих применений.
На основе электронной схемы создают соответствующее устройство (входящее в состав некоторой технической системы). К устройству предъявляется требование надёжной работы в течение заданного времени в реальных условиях производственного разброса параметров элементов и их старения, влияния внешней среды и возмущающих воздействий. Поэтому при разработке схем наряду с расчётом номинальных значений параметров элементов необходимо рассчитывать эксплуатационные допуски на них, предусматривать в схеме средства, повышающие надёжность устройства (обеспечивающие устойчивую работу схемы при внешних воздействиях), а также позволяющие контролировать его исправность.
Элементной базой для создания электронных устройств служат дискретные электро– и радиоэлементы (резисторы, конденсаторы, диоды, транзисторы и т. д.) и интегральные микросхемы (ИС, см. Интегральная схема). Если электронная схема реализуется в виде ИС либо нескольких ИС, то говорят о «микросхемотехнике», под которой понимают область микроэлектроники, связанную с проектированием ИС. Помимо синтеза и расчёта электронных схем, микросхемотехника решает задачу разработки на основе электронных схем структуры (топологии) ИС. Основные этапы разработки: расчёт геометрических размеров элементов ИС; рациональное размещение элементов на поверхности или в объёме подложки ИС; нахождение оптимальных соединений элементов (возможные критерии оптимальности – обеспечение минимальных длин проводников, либо числа их пересечений, либо взаимного влияния и т. д.). Так как создание новой ИС – комплексная проблема, то её решают совместно специалисты по микросхемотехнике, физики, технологи, конструкторы, используя комплексные опытно-теоретические методы, в том числе моделирование на ЭВМ как самой схемы, так и условий её работы.
Теоретической базой С. (в том числе микросхемотехники) служат теория линейных и нелинейных электрических цепей, электродинамика, математическое программирование, теория автоматов и др. При создании электронных схем перспективно использование методов проектирования с применением ЭВМ (см. в ст. Проектирование). По мере развития микроэлектроники, разработки больших ИС (БИС) – функциональных устройств, представляющих собой целые системы, С. по ряду аспектов сливается с системотехникой.
Лит.: Алексенко А. Г., Основы микросхемотехники, М., 1971; Поспелов Д. А., Логические методы анализа и синтеза схем, 3 изд., М., 1974.
Г. И. Веселов.
Схендел Артур ван
Схе'ндел (Schendel) Артур ван (5.3. 1874, Батавия, ныне Джакарта, Индонезия, – 11.9.1946, Амстердам), нидерландский писатель. Был учителем английского языка. В романах «Влюблённый бродяга» (1904), «Заблудший бродяга» (1907), «Цветы любви» (1921), в новелле «Анджолино и весна» (1923) С. рисовал романтическую среду вне времени и пространства. В романс «Клипер “Иоганна Мария”» (1930, рус. пер. 1966) он обратился к реальности. Углубление социальных мотивов, стремление дать правдивую картину жизни буржуазных Нидерландов выразились в романах «Человек с реки» (1933), «Голландская драма» (1935), «Мир – это праздник танца» (1938). Автор стилизованных под народные повестушки «Воспоминаний одного глупца» (1934) и романа «Менеер Оберон и жена» (1940), антифашистской поэмы «Нидерланды» (1945). Кризисные настроения послевоенных лет сказались в автобиографической книге «Проходящие тени» (опубликована в 1948).
Лит.: 's-Gravesande A. van, А. van Schendel, zijn leven en werk, Amst., 1949; Stuiveling G., A van Schendels drie gestalten, в его кн.: Steekproeven, Amst., 1950: Heerikhuizen Fr. W. van, Het werk van A. van Schendel, Amst., 1961.
И. В. Волевич.
Схенокаулон
Схенока'улон, сабадилла (Schoenocaulon), род многолетних луковичных трав семейства лилейных. Листья линейные, удлинённые. Цветки мелкие, в густом длинном колосовидном соцветии на верхушке безлистного стебля (стрелки). Околоцветник из 6 узких свободных листочков. Плод – трёхгнёздная коробочка с 6—9 семенами. Около 10 видов, на юге Северной Америки, в Центр, и Южной Америке, но преимущественно в Мексике. Наиболее известен С. лекарственный, или сабадилла лекарственная, вшивое семя (S. officinale), в горах Мексики, Гватемалы и Венесуэлы. Семена его ядовиты, содержат алкалоиды: вератридин, цевацин, сабадин, верагенин и верацевин. Настойка и отвар семян обладают инсектицидными свойствами, используются против паразитов животных и человека; препарат вератрин (сумма алкалоидов в виде настойки и мази) применяют при суставных болях и невралгиях.
Лит.: Муравьева Д. А.., Гаммерман А. Ф., Тропические и субтропические лекарственные растения, М., 1974.
Схенокаулон лекарственный: а – цветок; б – коробочка; в – семя.
Схерия
Схе'рия, в древнегреческой мифологии сказочный остров, заселённый феаками; последнее местопребывание Одиссея перед возвращением на родину. В античности С. иногда отождествляли с островом Керкирой (Корфу).
Схидам
Схида'м (Schiedam), город и порт в Нидерландах, в провинции Южная Голландия, на берегу р. Ньиве-Маас (рукав Рейна), близ г. Роттердам. 79,8 тыс. жителей (1974). Судостроение, электротехническая, пищевая промышленность.
Схизантус
Схиза'нтус, шизантус (Schizanthus), род однолетних травянистых растений семейства паслёновых. Листья, как правило, перисторассечённые. Цветки в метельчатых соцветиях; венчик двугубый с цельными или рассеченными долями. Около 15 видов, в Южной Америке (Чили). Многие С. декоративны. В цветоводстве широко используют С. перистый (S. pinnatus), его сорта и гибриды, более известные под назв. С. визетонский (S. ´ wisetonensis), с цветками различной окраски.
Схизма
Схи'зма (греч. schísma, буквально – расщепление), разделение христианской церкви на католическую и православную. См. Разделение церквей.
Схизогнатизм
Схизогнати'зм (биологический), то же, что шизогнатизм.
Схима
Схи'ма (от среднегреч. schma – монашеское облачение, буквально – наружный вид, форма), высшая монашеская степень в православной церкви. Посвященные в С. – схимонахи и схимонахини (или схимники) – дают обеты выполнения более суровых монашеских правил, делящихся в зависимости от трудности на великую С. и малую С.
Схистоцерка
Схистоце'рка, насекомое отряда прямокрылых; то же, что пустынная саранча.
Сход сельский
Сход се'льский, собрание крестьян-домохозяев – членов сельского общества в дореволюционной России. Ведал приёмом в сельское общество и исключением из него, распределением земли между членами общества, раскладкой оброка, общинных и казённых повинностей, избирал сельскую старосту и др. должностных лиц. Подчинялся полиции, мировому посреднику, земскому участковому начальнику. Собрание крестьян, решавших хозяйственные вопросы в первые годы Советской власти, называлось земельным сходом.
Схода точка
Схо'да то'чка, кажущаяся точка пересечения параллельных линий при изображении в перспективе. На перспективных изображениях С. т. параллельных прямых находится в пересечении плоскости картины с лучом зрения, параллельным этим прямым. См. также Начертательная геометрия.
Сходимости точка
Сходи'мости то'чка функционального ряда , такая точка x, что числовой ряд, составленный из значений функции un (x) в данной точке x, является сходящимся. Аналогично определяется С. т. для функциональной последовательности.
Сходимость
Сходи'мость, математическое понятие, означающее, что некоторая переменная величина имеет предел. В этом смысле говорят о С. последовательности, С. ряда, С. бесконечного произведения, С. непрерывной дроби, С. интеграла и т. д. Понятие С. возникает, например, когда при изучении того или иного математического объекта строится последовательность более простых в известном смысле объектов, приближающихся к данному, то есть имеющих его своим пределом (так, для вычисления длины окружности используется последовательность длин периметров правильных многоугольников, вписанных в окружность; для вычисления значений функций используются последовательности частичных сумм рядов, которыми представляются данные функции, и т. п.).
С. последовательности {an}, n = 1, 2,..., означает существование у неё конечного предела ; С. ряда — конечного предела (называемого суммой ряда) у последовательности его частичных сумм , ; С. бесконечного произведения b1 b2... bn – конечного предела, не равного нулю, у последовательности конечных произведений pn = b1b2... bn, n = 1, 2,...; С. интеграла от функции f (x), интегрируемой по любому конечному отрезку [а, b],— конечного предела у интегралов при b ® +µ, называется несобственным интегралом.
Свойство С. тех или иных математических объектов играет существенную роль как в вопросах теории, так и в приложениях математики. Например, часто используется представление каких-либо величин или функций с помощью сходящихся рядов; так, для основания натуральных логарифмов е имеется разложение его в сходящийся ряд
для функции sin х — в сходящийся при всех х ряд
Подобные ряды могут быть использованы для приближённого вычисления рассматриваемых величин и функций. Для этого достаточно взять сумму нескольких первых членов, при этом чем больше их взять, тем с большей точностью будет получено нужное значение. Для одних и тех же величин и функций имеются различные ряды, суммой которых они являются, например,
,
.
При практических вычислениях в целях экономии числа операций (а следовательно, экономии времени и уменьшения накопления ошибок) целесообразно из имеющихся рядов выбрать ряд, который сходится «более быстро». Если даны два сходящихся ряда и , и , . — их остатки, то 1-й ряд называется сходящимся быстрее 2-го ряда, если
.
Например, ряд
сходится быстрее ряда
.
Используются и другие понятия «более быстро» сходящихся рядов. Существуют различные методы улучшения С. рядов, то есть методы, позволяющие преобразовать данный ряд в «более быстро» сходящийся. Аналогично случаю рядов вводится понятие «более быстрой» С. и для несобственных интегралов, для которых также имеются способы улучшения их С.
Большую роль понятие С. играет при решении всевозможных уравнений (алгебраических, дифференциальных, интегральных), в частности при нахождении их численных приближённых решений. Например, с помощью последовательных приближений метода можно получить последовательность функций, сходящихся к соответствующему решению данного обыкновенного дифференциального уравнения, и тем самым одновременно доказать существование при определённых условиях решения и дать метод, позволяющий вычислить это решение с нужной точностью. Как для обыкновенных дифференциальных уравнений, так и уравнений с частными производными существует хорошо разработанная теория различных сходящихся конечноразностных методов их численного решения (см. Сеток метод). Для практического нахождения приближённых решений уравнений широко используются ЭВМ.
Если изображать члены an последовательности {an} на числовой прямой, то С. этой последовательности к а означает, что расстояние между точками anи а становится и остаётся сколь угодно малым с возрастанием n. В этой формулировке понятие С. обобщается на последовательности точек плоскости, пространства и более общих объектов, для которых может быть определено понятие расстояния, обладающее обычными свойствами расстояния между точками пространства (например, на последовательности векторов, матриц, функций, геометрических фигур и т. д., см. Метрическое пространство). Если последовательность {an} сходится к а, то вне любой окрестности точки а лежит лишь конечное число членов последовательности. В этой формулировке понятие С. допускает обобщение на совокупности величин ещё более общей природы, в которых тем или иным образом введено понятие окрестности (см. Топологическое пространство).
В математическом анализе используются различные виды С. последовательности функций {fn (x)} к функции f (x) (на некотором множестве М). Если для каждой точки X (из М), то говорят о С. в каждой точке [если это равенство не имеет места лишь для точек, образующих множество меры нуль (см. Мера множества), то говорят о С. почти всюду]. Несмотря на свою естественность, понятие С. в каждой точке обладает многими нежелательными особенностями [например, последовательность непрерывных функций может сходиться в каждой точке к разрывной функции; из С. функций fn (x) к f (x) в каждой точке не следует, вообще говоря, С. интегралов от функций fn (x) к интегралу от f (x) и т. д.]. В связи с этим было введено понятие равномерной С., свободное от этих недостатков: последовательность {fn (x)} называется равномерно сходящейся к f (x) на множестве М, если
Этот вид С. соответствует определению расстояния между функциями f (x) и ((х) по формуле
Д. Ф. Егоров доказал, что если последовательность измеримых функций сходится почти всюду на множестве М, то из М можно так удалить часть сколь угодно малой меры, чтобы на оставшейся части имела место равномерная С.
В теории интегральных уравнений, ортогональных рядов и т. д. широко применяется понятие средней квадратической С.: последовательность {fn (x)} сходится на отрезке [a, b] в среднем квадратическом к f (x), если
.
Более общо, последовательность {fn (x)} сходится в среднем с показателем р к f (x), если
.
Эта С. соответствует заданию расстояния между функциями по формуле
.
Из равномерной С. на конечном отрезке вытекает С. в среднем с любым показателем р. Последовательность частичных сумм разложения функции j(х) с интегрируемым квадратом по нормированной ортогональной системе функций может расходиться в каждой точке, но такая последовательность всегда сходится к j(х) в среднем квадратическом. Рассматриваются также другие виды С. Например, С. по мере: для любого e > 0 мера множества тех точек, для которых , стремится к нулю с возрастанием n', слабая С.:
для любой функции j(x) с интегрируемым квадратом (например, последовательность функций sinx, sin2x,..., sinnx,... слабо сходится к нулю на отрезке [—p, p], так как для любой функции j(х) с интегрируемым квадратом коэффициенты ряда Фурье стремятся к нулю).
Указанные выше и многие другие понятия С. последовательности функций систематически изучаются в функциональном анализе, где рассматриваются различные линейные пространства с заданной нормой (расстоянием до нуля) – так называемые банаховы пространства. В таких пространствах можно ввести понятия С. функционалов, операторов и т. д., определяя для них соответствующим образом норму. Наряду со С. по норме (так называемой сильной С.), в банаховых пространствах рассматривается слабая С., определяемая условием для всех линейных функционалов; введённая выше слабая С. функций соответствует рассмотрению нормы . В современной математике рассматривается также С. по частично упорядоченным множествам (см. Упорядоченные и частично упорядоченные множества). В теории вероятностей для последовательности случайных величин употребляются понятия С. с вероятностью 1 и С. по вероятности.
Ещё математики древности (Евклид, Архимед) по существу употребляли бесконечные ряды для нахождения площадей и объёмов. Доказательством С. рядов им служили вполне строгие рассуждения по схеме исчерпывания метода. Термин «С.» в применении к рядам был введён в 1668 Дж. Грегори при исследовании некоторых способов вычисления площади круга и гиперболического сектора. Математики 17 в. обычно имели ясное представление о С. употребляемых ими рядов, хотя и не проводили строгих с современной точки зрения доказательств С. В 18 в. широко распространилось употребление в анализе заведомо расходящихся рядов (в частности, их широко применял Л. Эйлер). Это, с одной стороны, привело впоследствии ко многим недоразумениям и ошибкам, устранённым лишь с развитием отчётливой теории С., а с другой – предвосхитило современную теорию суммирования расходящихся рядов. Строгие методы исследования С. рядов были разработаны в 19 в. (О. Коши, Н. Абель, К. Вейерштрасс, Б. Больцано и др.). Понятие равномерной С. было введено Дж. Стоксом. Дальнейшие расширения понятия С. были связаны с развитием теории функций, функционального анализа и топологии.
Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., т. 1—2, М., 1971—73; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 1—2, М., 1970; Никольский С. М., Курс математического анализа, т. 1—2, М., 1973.